1,运行时数据区域
根据JAVA虚拟机规范的规定:JAVA虚拟机所管理的内存将会包括以下几个运行时数据区域

程序计数器(Program Counter Register)是一块较小的内存空间,它的作用可以看作是当前线程所执行的字节码的行号指示器,通过改变计数器的值来选取下一条需要执行的字节码指令、分支、循环、跳转、异常处理、线程恢复等基础功能。每条线程都需要一个独立的程序计数器,各条线程之间的计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存,也是唯一不会出现OutOfMemoryError情况的区域。
JAVA虚拟机栈(Java Virtual Machine Stacks)也是线程私有,它的生命周期与线程相同,用来描述JAVA方法执行的内存模型:每个方法被执行的时候都会同时创建一个栈帧,用于存储局部变量表、操作栈、动态链接、方法出口等。每一个方法从被调用到执行完成的过程,也就一个栈帧在虚拟机栈从入栈到出栈的过程。
在JAVA虚拟机规范中,对这个区域规定了两种异常状况:如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常。如果虚拟机可以动态扩展,当扩展到无法申请到足够的内存时,会抛出OutOfMemoryError异常。
本地方法栈(Native Method Stacks)与上述的虚拟机栈非常类似,只是虚拟机栈为执行JAVA方法服务,而本地方法栈为虚拟机使用到的Native方法服务。
JAVA堆(Java Heap)是Java虚拟机所管理内存中最大的一块,被所有线程共享,在虚拟机启动时创建,此内存区域的唯一目的就是为了存放对象实例。JAVA堆是垃圾回收器管理的主要区域。如果堆中没有足够的内存完成实例分配,并且堆无法扩展时,将会抛出OutOfMemoryError异常。
方法区(Method Area)方法区也被称为“持久代”,此内存区域与堆一样,也是线程共享的。它用于存储已被虚拟机加载的类(java.lang.Class)信息、常量、静态变量、即时编译器编译后的代码等数据。垃圾回收行为在这个区域是比较少见的,并且可以选择不回收。
当此区域无法满足内存分配需求时,将抛出OutOfMemoryError异常。
运行时常量池(Runtime Constant Pool)是方法区的一部分,Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池,用于存放编译期生成的各种字面量和符号引用,这部分内容将在类加载后存放到方法区的运行时常量池。当常量池无法再分配到内存时,也会抛出OutOfMemoryError异常。
直接内存(Direct Memory)并不是虚拟机运行时数据区的一部分,也不是JAVA虚拟机规范中定义的内存区域,但是这部分内存也频繁被使用,并且也可能抛出OutOfMemoryError异常。如NIO可以使用Native函数库直接分配堆外内存。
2,对象访问
介绍完JAVA运行时数据区域后,再看看JAVA对象访问是如何进行的。
即使是最简单的访问,也会涉及JAVA栈、JAVA堆、方法区三个最重要的内存区域,如下代码
- Object obj = new Object();
假设这段代码出现在方法体中,那"Object obj"这部分的语义将会反映到JAVA栈的局部变量表中,作为一个reference类型的数据出现,因此就存在虚拟机栈中。 而"new Object();"这部分的语义将会反映到JAVA堆中,形成一个存储了Object类型所有实例数据值(Instance Data,对象中各个实例字段的数据)的结构化内存。另外,在JAVA堆中还必须包含能查找到此对象类型数据(如对象类型、父类、实现的接口、方法等)的地址信息,这些类型数据则存储在方法区中。
由于reference类型在JAVA虚拟机规范中只规定了一个指向对象的引用,并没有规定用哪种方式去实现,因此不同的虚拟机实现的方式会有所不同,主流的访问方式有两种:使用句柄与使用指针:
句柄:JAVA堆中会划分出一块内存来作为字柄池,reference存放的是对象的句柄地址,而句柄中包含了对象实例和类型数据各自的具体地址信息: 如下图所示 :

指针:如果使用指针访问方式,JAVA堆对象的布局中就必须考虑如何放置访问类型数据的相关信息,reference中直接存储的就是对象地址

这两种方式各有优势,使用句柄访问最大的好处就是reference存储的是稳定的句柄地址,在对象被移动时只会改变句柄中的实例数据指针,而reference本身不需要被修改。使用指针的好处就是速度快,节省一次指针定位的时间开销。Sun HotSpot虚拟机使用第二种方式进行对象访问。
3,实战:OutOfMemoryError异常
在JAVA虚拟机规范描述中:除了程序计数器外,其它几个内存区域都有发生OutOfMemoryError异常的可能,本节通过若干实例来验证异常发生的场景。
注意:每个示例代码的开头都会注明虚拟机启动参数的设置,具体设置方法如下图:

3.1:JAVA堆溢出:
- package com.chapter1;
-
- import java.util.ArrayList;
- import java.util.List;
-
-
-
-
- public class HeapOOm {
- static class OOmObject{
- }
- public static void main(String[] args) {
- List<OOmObject> oomList = new ArrayList<OOmObject>();
- while(true){
- oomList.add(new OOmObject());
- }
- }
- }
运行结果:

-Xms表示堆内存的最小值,-Xmx表示堆内存的最大值。
上例通过不断生成新对象,导致内存溢出。
3.2虚拟机栈和本地方法栈溢出
如果线程请求的栈深度大于虚拟机所允许的最大深度,将抛出StackOverflowError异常
如果虚拟机在扩展栈时无法申请到足够的内存空间,则抛出OutOfMemoryError异常
一般在单线程程序情况下无法产生OutOfMemoryError异常
- package com.chapter1;
-
-
-
-
- public class JavaVMStackSOF {
- private int stackLength = 1;
- public void stackLeak(){
- stackLength ++;
- stackLeak();
- }
- public static void main(String[] args) throws Throwable {
- JavaVMStackSOF oom = new JavaVMStackSOF();
- try {
- oom.stackLeak();
- } catch (Exception e) {
- System.out.println("stack lenght:"+oom.stackLength);
- throw e;
- }
- }
- }
运行结果:

下面这个示例,尝试使用多线程方式得到OutOfMemeoryError的结果, -Xss参数是用于设置每个线程的堆栈大小。
- package com.chapter1;
-
-
-
-
- public class JavaVMStackOOM {
- private void dontStop(){
- while (true) {
- }
- }
- public void stackLeakByThread(){
- int i = 0;
- while(true){
- System.out.println(i++);
- Thread thread = new Thread(new Runnable() {
- public void run() {
- dontStop();
- }
- });
- thread.start();
- }
- }
- public static void main(String[] args) {
- JavaVMStackOOM oom = new JavaVMStackOOM();
- oom.stackLeakByThread();
- }
- }
3.3运行时常量池溢出(也是方法区的一部分)
- package com.chapter1;
-
- import java.util.ArrayList;
- import java.util.List;
-
-
-
-
- public class RuntimeConstantPoolOOM {
- public static void main(String[] args) {
- List<String> list = new ArrayList<String>();
- int i = 0;
- while(true){
- System.out.println(i);
- list.add(String.valueOf(i++).intern());
- }
- }
- }
运行结果:

3.4方法区溢出:
方法区用于存放Class的相关信息,如类名,访问修饰符,常量池,字段描述,方法描述等。对于这个区域的测试,大概思路是运行时产生大量的类去填满方法区,直到溢出,本例使用CGLib直接操作字节码,生成大量动态类
- package com.chapter1;
-
- import java.lang.reflect.Method;
- import net.sf.cglib.proxy.Enhancer;
- import net.sf.cglib.proxy.MethodInterceptor;
- import net.sf.cglib.proxy.MethodProxy;
-
-
-
-
- public class JavaMethodAreaOOM {
- public static void main(String[] args) {
- while(true){
- Enhancer enhancer = new Enhancer();
- enhancer.setSuperclass(OOMObject.class);
- enhancer.setUseCache(false);
- enhancer.setCallback(new MethodInterceptor() {
- public Object intercept(Object obj, Method method, Object[] args,
- MethodProxy proxy) throws Throwable {
- return proxy.invokeSuper(obj, args);
- }
- });
- enhancer.create();
- }
- }
- static class OOMObject{
- }
- }
由于CGLib的原因,本例在我电脑上并未调试通过。
3.5 本机直接内存溢出
DirectMemory容量可以通过-XX:MaxDirectMemorySize指定,如果不指定,则默认与JAVA堆的最大值一样,
- package com.chapter1;
-
- import java.lang.reflect.Field;
- import sun.misc.*;
-
-
-
- public class DirectMemoryOOM {
- private static final int _1MB = 1024*1024;
- public static void main(String[] args) {
- Field unsafeField = Unsafe.class.getDeclaredFields()[0];
- }
- }

分享到:
相关推荐
全国大学生智能汽车竞赛自2006年起,由教育部高等教育司委托高等学校自动化类教学指导委员会举办,旨在加强学生实践、创新能力和培养团队精神的一项创意性科技竞赛。该竞赛至今已成功举办多届,吸引了众多高校学生的积极参与,此文件为智能车竞赛介绍
字卡v4.3.4 原版 三种UI+关键字卡控制+支持获取用户信息+支持强制关注 集卡模块从一开始的版本到助力版本再到现在的新规则版本。 集卡模块难度主要在于 如何控制各种不同的字卡组合 被粉丝集齐的数量。 如果不控制那么一定会出现超过数量的粉丝集到指定的字卡组合,造成奖品不够的混乱,如果大奖价值高的话,超过数量的粉丝集到大奖后,就造成商家的活动费用超支了。我们冥思苦想如何才能限制集到指定字卡组合的粉丝数,后我们想到了和支付宝一样的选一张关键字卡来进行规则设置的方式来进行限制,根据奖品所需的关键字卡数,设定规则就可以控制每种奖品所需字卡组合被粉丝集到的数量,规则可以在活动进行中根据需要进行修改,活动规则灵活度高。新版的集卡规则,在此次政府发布号的活动中经受了考验,集到指定字卡组合的粉丝没有超出规则限制。有了这个规则限制后,您无需盯着活动,建好活动后就无人值守让活动进行就行了,您只需要时不时来看下蹭蹭上涨的活动数据即可。 被封? 无需担心,模块内置有防封功能,支持隐藏主域名,显示炮灰域名,保护活动安全进行。 活动准备? 只需要您有一个认证服务号即可,支持订阅号借用认证服务号来做活动。如果您
出口设备线体程序详解:PLC通讯下的V90控制与开源FB284工艺对象实战指南,出口设备线体程序详解:PLC通讯与V90控制集成,工艺对象与FB284协同工作,开源学习V90控制技能,出口设备1200线体程序,多个plc走通讯,内部有多个v90,采用工艺对象与fb284 共同控制,功能快全部开源,能快速学会v90的控制 ,出口设备; 1200线体程序; PLC通讯; 多个V90; 工艺对象; FB284; 功能开源; V90控制。,V90工艺控制:开源功能快,快速掌握1200线体程序与PLC通讯
基于Arduino与DAC8031的心电信号模拟器资料:心电信号与正弦波的双重输出应用方案,Arduino与DAC8031心电信号模拟器:生成心电信号与正弦波输出功能详解,基于arduino +DAC8031的心电信号模拟器资料,可输出心电信号,和正弦波 ,基于Arduino;DAC8031;心电信号模拟器;输出心电信号;正弦波输出;模拟器资料,基于Arduino与DAC8031的心电信号模拟器:输出心电与正弦波
MATLAB口罩检测的基本流程 图像采集:通过摄像头或其他图像采集设备获取包含面部的图像。 图像预处理:对采集到的图像进行灰度化、去噪、直方图均衡化等预处理操作,以提高图像质量,便于后续的人脸检测和口罩检测。 人脸检测:利用Haar特征、LBP特征等经典方法或深度学习模型(如MTCNN、FaceBoxes等)在预处理后的图像中定位人脸区域。 口罩检测:在检测到的人脸区域内,进一步分析是否佩戴口罩。这可以通过检测口罩的边缘、纹理等特征,或使用已经训练好的口罩检测模型来实现。 结果输出:将检测结果以可视化方式展示,如在图像上标注人脸和口罩区域,或输出文字提示是否佩戴口罩。
1、文件内容:kernel-debug-devel-3.10.0-1160.119.1.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/kernel-debug-devel-3.10.0-1160.119.1.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊
该文档提供了一个关于供应链管理系统开发的详细指南,重点介绍了项目安排、技术实现和框架搭建的相关内容。 文档分为以下几个关键部分: 项目安排:主要步骤包括搭建框架(1天),基础数据模块和权限管理(4天),以及应收应付和销售管理(5天)。 供应链概念:供应链系统的核心流程是通过采购商品放入仓库,并在销售时从仓库提取商品,涉及三个主要订单:采购订单、销售订单和调拨订单。 大数据的应用:介绍了数据挖掘、ETL(数据抽取)和BI(商业智能)在供应链管理中的应用。 技术实现:讲述了DAO(数据访问对象)的重用、服务层的重用、以及前端JS的继承机制、jQuery插件开发等技术细节。 系统框架搭建:包括Maven环境的配置、Web工程的创建、持久化类和映射文件的编写,以及Spring配置文件的实现。 DAO的需求和功能:供应链管理系统的各个模块都涉及分页查询、条件查询、删除、增加、修改操作等需求。 泛型的应用:通过示例说明了在Java语言中如何使用泛型来实现模块化和可扩展性。 文档非常技术导向,适合开发人员参考,用于构建供应链管理系统的架构和功能模块。
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
C#与VB实现欧姆龙PLC的Fins TCP通信案例源码:调用动态链接库进行数据读写,定时器与计数器数据区的简洁读写操作示例,C#与VB实现欧姆龙PLC的Fins TCP通信案例源码:调用动态链接库进行读写操作,涵盖定时器计数器数据区学习案例,C#欧姆龙plc Fins Tcp通信案例上位机源码,有c#和VB的Demo,c#上位机和欧姆龙plc通讯案例源码,调用动态链接库,可以实现上位机的数据连接,可以简单实现D区W区定时器计数器等数据区的读写,是一个非常好的学习案例 ,C#; 欧姆龙PLC; Fins Tcp通信; 上位机源码; 动态链接库; 数据连接; D区W区读写; 定时器计数器; 学习案例,C#实现欧姆龙PLC Fins Tcp通信上位机源码,读写数据区高效学习案例
可调谐石墨烯超材料吸收体的FDTD仿真模拟研究报告:吸收光谱的化学势调节策略与仿真源文件解析,可调谐石墨烯超材料吸收体:化学势调节光谱的FDTD仿真模拟研究,可调谐石墨烯超材料吸收体FDTD仿真模拟 【案例内容】该案例提供了一种可调谐石墨烯超材料吸收体,其吸收光谱可以通过改变施加于石墨烯的化学势来进行调节。 【案例文件】仿真源文件 ,可调谐石墨烯超材料吸收体; FDTD仿真模拟; 化学势调节; 仿真源文件,石墨烯超材料吸收体:FDTD仿真调节吸收光谱案例解析
RBF神经网络控制仿真-第二版
松下PLC与威纶通触摸屏转盘设备控制:FPWINPRO7与EBPRO智能编程与宏指令应用,松下PLC与威纶通触摸屏转盘设备控制解决方案:FPWINPRO7与EBPRO协同工作,实现多工位转盘加工与IEC编程模式控制,松下PLC+威纶通触摸屏的转盘设备 松下PLC工程使用程序版本为FPWINPRO7 7.6.0.0版本 威纶通HMI工程使用程序版本为EBPRO 6.07.02.410S 1.多工位转盘加工控制。 2.国际标准IEC编程模式。 3.触摸屏宏指令应用控制。 ,松下PLC; 威纶通触摸屏; 转盘设备控制; 多工位加工控制; IEC编程模式; 触摸屏宏指令应用,松下PLC与威纶通HMI联控的转盘设备控制程序解析
基于循环神经网络(RNN)的多输入单输出预测模型(适用于时间序列预测与回归分析,需Matlab 2021及以上版本),基于循环神经网络(RNN)的多输入单输出预测模型(matlab版本2021+),真实值与预测值对比,多种评价指标与线性拟合展示。,RNN预测模型做多输入单输出预测模型,直接替数据就可以用。 程序语言是matlab,需求最低版本为2021及以上。 程序可以出真实值和预测值对比图,线性拟合图,可打印多种评价指标。 PS:以下效果图为测试数据的效果图,主要目的是为了显示程序运行可以出的结果图,具体预测效果以个人的具体数据为准。 2.由于每个人的数据都是独一无二的,因此无法做到可以任何人的数据直接替就可以得到自己满意的效果。 这段程序主要是一个基于循环神经网络(RNN)的预测模型。它的应用领域可以是时间序列预测、回归分析等。下面我将对程序的运行过程进行详细解释和分析。 首先,程序开始时清空环境变量、关闭图窗、清空变量和命令行。然后,通过xlsread函数导入数据,其中'数据的输入'和'数据的输出'是两个Excel文件的文件名。 接下来,程序对数据进行归一化处理。首先使用ma
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
旅游管理系统中的功能模块主要是实现管理员;首页、个人中心、用户管理、旅游方案管理、旅游购买管理、系统管理,用户;首页、个人中心、旅游方案管理、旅游购买管理、我的收藏管理。前台首页;首页、旅游方案、旅游资讯、个人中心、后台管理等功能。经过认真细致的研究,精心准备和规划,最后测试成功,系统可以正常使用。分析功能调整与旅游管理系统实现的实际需求相结合,讨论了Java开发旅游管理系统的使用。 从上面的描述中可以基本可以实现软件的功能: 1、开发实现旅游管理系统的整个系统程序; 2、管理员;首页、个人中心、用户管理、旅游方案管理、旅游购买管理、系统管理等。 3、用户:首页、个人中心、旅游方案管理、旅游购买管理、我的收藏管理。 4、前台首页:首页、旅游方案、旅游资讯、个人中心、后台管理等相应操作; 5、基础数据管理:实现系统基本信息的添加、修改及删除等操作,并且根据需求进行交流查看及回复相应操作。
Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构,Simulink建模,MPPT最大功率点追踪,扰动观察法采用功率反馈方式,若ΔP>0,说明电压调整的方向正确,可以继续按原方向进行“干扰”;若ΔP<0,说明电压调整的方向错误,需要对“干扰”的方向进行改变。 ,Boost升压;光伏并网结构;Simulink建模;MPPT最大功率点追踪;扰动观察法;功率反馈;电压调整方向。,光伏并网结构中Boost升压MPPT控制策略的Simulink建模与功率反馈扰动观察法
运行GUI版本,可二开
Deepseek相关主题资源及行业影响
WP Smush Pro 是一款专为 WordPress 网站设计的图像优化插件。 一、主要作用 图像压缩 它能够在不影响图像质量的前提下,大幅度减小图像文件的大小。例如,对于一些高分辨率的产品图片或者风景照片,它可以通过先进的压缩算法,去除图像中多余的数据。通常 JPEG 格式的图像经过压缩后,文件大小可以减少 40% – 70% 左右。这对于网站性能优化非常关键,因为较小的图像文件可以加快网站的加载速度。 该插件支持多种图像格式的压缩,包括 JPEG、PNG 和 GIF。对于 PNG 图像,它可以在保留透明度等关键特性的同时,有效地减小文件尺寸。对于 GIF 图像,也能在一定程度上优化文件大小,减少动画 GIF 的加载时间。 懒加载 WP Smush Pro 实现了图像懒加载功能。懒加载是一种延迟加载图像的技术,当用户滚动页面到包含图像的位置时,图像才会加载。这样可以避免一次性加载大量图像,尤其是在页面内容较多且包含许多图像的情况下。例如,在一个新闻网站的长文章页面,带有大量配图,懒加载可以让用户在浏览文章开头部分时,不需要等待所有图片加载,从而提高页面的初始加载速度,同时也能
Could not create share link. Missing file: C:\Users\xx\.conda\envs\omni\Lib\site-packages\gradio\frpc_windows_amd64_v0.3 1. Download this file: https://cdn-media.huggingface.co/frpc-gradio-0.3/frpc_windows_amd64.exe 2. Rename the downloaded file to: frpc_windows_amd64_v0.3 3. Move the file to this location: C:\Users\xx\.conda\envs\omni\Lib\site-packages\gradio