`
jackyhongvip
  • 浏览: 160894 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

布隆过滤器

 
阅读更多

布隆过滤器 (Bloom Filter)是由Burton Howard Bloom于1970年提出,它是一种space efficient的概率型数据结构,用于判断一个元素是否在集合中。在垃圾邮件过滤的黑白名单方法、爬虫(Crawler)的网址判重模块中等等经常被用到。哈希表也能用于判断元素是否在集合中,但是布隆过滤器只需要哈希表的1/8或1/4的空间复杂度就能完成同样的问题。布隆过滤器可以插入元素,但不可以删除已有元素。其中的元素越多,false positive rate(误报率)越大,但是false negative (漏报)是不可能的。

 

本文将详解布隆过滤器的相关算法和参数设计,在此之前希望大家可以先通过谷歌黑板报的数学之美系列二十一 - 布隆过滤器(Bloom Filter)来得到些基础知识。

 

一. 算法描述

一个empty bloom filter是一个有m bits的bit array,每一个bit位都初始化为0。并且定义有k个不同的hash function,每个都以uniform random distribution将元素hash到m个不同位置中的一个。在下面的介绍中n为元素数,m为布隆过滤器或哈希表的slot数,k为布隆过滤器重hash function数。

 

为了add一个元素,用k个hash function将它hash得到bloom filter中k个bit位,将这k个bit位置1。

 

为了query一个元素,即判断它是否在集合中,用k个hash function将它hash得到k个bit位。若这k bits全为1,则此元素在集合中;若其中任一位不为1,则此元素比不在集合中(因为如果在,则在add时已经把对应的k个bits位置为1)。

 

不允许remove元素,因为那样的话会把相应的k个bits位置为0,而其中很有可能有其他元素对应的位。因此remove会引入false negative,这是绝对不被允许的。

 

当k很大时,设计k个独立的hash function是不现实并且困难的。对于一个输出范围很大的hash function(例如MD5产生的128 bits数),如果不同bit位的相关性很小,则可把此输出分割为k份。或者可将k个不同的初始值(例如0,1,2, … ,k-1)结合元素,feed给一个hash function从而产生k个不同的数。

 

当add的元素过多时,即n/m过大时(n是元素数,m是bloom filter的bits数),会导致false positive过高,此时就需要重新组建filter,但这种情况相对少见。

 

二. 时间和空间上的优势

当可以承受一些误报时,布隆过滤器比其它表示集合的数据结构有着很大的空间优势。例如self-balance BST, tries, hash table或者array, chain,它们中大多数至少都要存储元素本身,对于小整数需要少量的bits,对于字符串则需要任意多的bits(tries是个例外,因为对于有相同prefixes的元素可以共享存储空间);而chain结构还需要为存储指针付出额外的代价。对于一个有1%误报率和一个最优k值的布隆过滤器来说,无论元素的类型及大小,每个元素只需要9.6 bits来存储。这个优点一部分继承自array的紧凑性,一部分来源于它的概率性。如果你认为1%的误报率太高,那么对每个元素每增加4.8 bits,我们就可将误报率降低为原来的1/10。add和query的时间复杂度都为O(k),与集合中元素的多少无关,这是其他数据结构都不能完成的。

 

如果可能元素范围不是很大,并且大多数都在集合中,则使用确定性的bit array远远胜过使用布隆过滤器。因为bit array对于每个可能的元素空间上只需要1 bit,add和query的时间复杂度只有O(1)。注意到这样一个哈希表(bit array)只有在忽略collision并且只存储元素是否在其中的二进制信息时,才会获得空间和时间上的优势,而在此情况下,它就有效地称为了k=1的布隆过滤器。

 

而当考虑到collision时,对于有m个slot的bit array或者其他哈希表(即k=1的布隆过滤器),如果想要保证1%的误判率,则这个bit array只能存储m/100个元素,因而有大量的空间被浪费,同时也会使得空间复杂度急剧上升,这显然不是space efficient的。解决的方法很简单,使用k>1的布隆过滤器,即k个hash function将每个元素改为对应于k个bits,因为误判度会降低很多,并且如果参数k和m选取得好,一半的m可被置为为1,这充分说明了布隆过滤器的space efficient性。

 

三. 举例说明

以垃圾邮件过滤中黑白名单为例:现有1亿个email的黑名单,每个都拥有8 bytes的指纹信息,则可能的元素范围为  ,对于bit array来说是根本不可能的范围,而且元素的数量(即email列表)为 ,相比于元素范围过于稀疏,而且还没有考虑到哈希表中的collision问题。

 

若采用哈希表,由于大多数采用open addressing来解决collision,而此时的search时间复杂度为 :

即若哈希表半满(n/m = 1/2),则每次search需要probe 2次,因此在保证效率的情况下哈希表的存储效率最好不超过50%。此时每个元素占8 bytes,总空间为:

若采用Perfect hashing(这里可以采用Perfect hashing是因为主要操作是search/query,而并不是add和remove),虽然保证worst-case也只有一次probe,但是空间利用率更低,一般情况下为50%,worst-case时有不到一半的概率为25%。

 

若采用布隆过滤器,取k=8。因为n为1亿,所以总共需要 被置位为1,又因为在保证误判率低且k和m选取合适时,空间利用率为50%(后面会解释),所以总空间为:

所需空间比上述哈希结构小得多,并且误判率在万分之一以下。

 

四. 误判概率的证明和计算

假设布隆过滤器中的hash function满足simple uniform hashing假设:每个元素都等概率地hash到m个slot中的任何一个,与其它元素被hash到哪个slot无关。若m为bit数,则对某一特定bit位在一个元素由某特定hash function插入时没有被置位为1的概率为:

则k个hash function中没有一个对其置位的概率为:

如果插入了n个元素,但都未将其置位的概率为:

则此位被置位的概率为:

 

现在考虑query阶段,若对应某个待query元素的k bits全部置位为1,则可判定其在集合中。因此将某元素误判的概率为:

由于 ,并且   当m很大时趋近于0,所以

从上式中可以看出,当m增大或n减小时,都会使得误判率减小,这也符合直觉。

 

现在计算对于给定的m和n,k为何值时可以使得误判率最低。设误判率为k的函数为:

设  , 则简化为

,两边取对数

  , 两边对k求导

下面求最值

 

 

 

 

 

 

 

因此,即当   时误判率最低,此时误判率为:

可以看出若要使得误判率≤1/2,则:

这说明了若想保持某固定误判率不变,布隆过滤器的bit数m与被add的元素数n应该是线性同步增加的。

 

五. 设计和应用布隆过滤器的方法

 

应用时首先要先由用户决定要add的元素数n和希望的误差率P。这也是一个设计完整的布隆过滤器需要用户输入的仅有的两个参数,之后的所有参数将由系统计算,并由此建立布隆过滤器。

 

系统首先要计算需要的内存大小m bits:

 

再由m,n得到hash function的个数:

分享到:
评论

相关推荐

    Go-一个简单的golang布隆过滤器

    布隆过滤器是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。在Go语言中实现一个简单的布隆过滤器可以帮助我们高效地处理大数据集,尤其是在内存有限的情况下。以下是对这个主题的详细...

    java实现的布隆过滤器算法

    布隆过滤器(Bloom Filter)是一种空间效率极高的概率型数据结构,用于判断一个元素是否在一个集合中。它可能会误判,但不会漏判,即如果它说一个元素在集合中,那可能是错误的,但如果它说一个元素不在集合中,那么...

    bloom filter(C#版自制布隆过滤器)

    布隆过滤器是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。它是由 Burton Howard Bloom 在1970年提出的,主要应用于大数据存储和检索,尤其在数据库、缓存系统和网络搜索等领域有广泛...

    转载:布隆过滤器算法

    根据给定的信息,本文将详细解释布隆过滤器的基本概念、工作原理以及通过提供的C/C++实现代码来深入了解其实际应用。 ### 布隆过滤器简介 布隆过滤器是一种空间效率极高的概率型数据结构,用于测试一个元素是否在...

    布隆过滤器(利用布隆过滤器实现文字的嵌入和查找功能)

    布隆过滤器,大家学过数据结构的应该都清楚,一般的字典树要实现嵌入和查找都内存的消耗非常大,布隆过滤器有BloomFilter,string, BKDRHash, APHash, DJBHash> bf五个参数你要查找的元素个数,查找元素类型,三个...

    布隆过滤器之C++实现

    C++实现的布隆过滤器,其中使用到的bitset也是自己简单实现的一个BitContainer。可以处理千万条到亿条记录的存在性判断。做成dll可以在很多场合使用,如自己写爬虫,要判断一个url是否已经访问过,判断一个单词是否...

    布隆过滤器C源码-bloomfilter.rar

    布隆过滤器是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。它是由 Burton Howard Bloom 在1970年提出的,主要应用于大数据和分布式系统中,以减少内存消耗并提高查询效率。在C语言实现...

    【技术分享】Bloomfilter布隆过滤器.pptx

    布隆过滤器是一种高效的空间节省的数据结构,用于判断一个元素是否可能在一个集合中,但可能会产生一定的误判率。它由一个很长的二进制向量和多个独立的哈希函数组成。布隆过滤器的基本原理是,当一个元素被添加到...

    布隆过滤器python库

    布隆过滤器是一种概率数据结构,用于判断一个元素是否可能在一个集合中存在。它通过使用位数组和几个独立的哈希函数来实现,具有高效、节省空间的特点,但可能会产生假阳性错误,即误判一个不在集合中的元素为在集合...

    布隆过滤器的实现,以及测试用例,简单易懂并做了一些注释

    布隆过滤器是一种概率型数据结构,用于判断一个元素是否可能在一个集合中。它是由Burton Howard Bloom在1970年提出的,主要用于解决大数据集的存储和查询问题,尤其在空间效率上有着显著优势。在数据库、搜索引擎、...

    布隆过滤器BloomFilters的一个简单Java库

    布隆过滤器(Bloom Filter)是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。在Java开发中,特别是在处理大数据、内存限制或需要快速查询是否存在某个元素的场景下,布隆过滤器是一个...

    9 Redis布隆过滤器插件安装.zip

    Redis布隆过滤器插件是Redis数据库中一个非常实用的扩展功能,主要用于高效地判断一个元素是否可能存在于集合中。由于其独特的数据结构和算法,它在存储空间和查询效率之间取得了良好的平衡,尤其适用于大数据场景下...

    php + redis布隆过滤器.zip

    布隆过滤器是一种概率型数据结构,用于判断一个元素是否可能在一个集合中存在。它在处理大量数据时,能够高效地进行存在性查询,而牺牲一定的误判率。在PHP和Redis结合应用中,布隆过滤器常被用来解决缓存穿透问题,...

    基于布隆过滤器的字符串模糊匹配算法的FPGA实现.pdf

    布隆过滤器是一种高效的概率型数据结构,它用于判断一个元素是否在一个集合中,具有空间效率和时间效率高的优点。在字符串模糊匹配算法中,布隆过滤器能够用来快速排除那些肯定不匹配的字符串,从而减少不必要的精确...

    Go-布隆过滤器的一个Go实现参考bloomfilter.js

    布隆过滤器是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。它可能会产生误报(false positive),但绝不会产生漏报(false negative)。这种特性使得它在大数据处理、缓存、数据库等...

    布隆过滤器-BloomFilter

    布隆过滤器(Bloom Filter)是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。由布隆在1970年提出,它不像传统的数据结构如哈希表那样保证不误判,而是允许有一定的错误率。这种特性使得...

    布隆过滤器 java实现代码

    布隆过滤器 源码 java版 /** * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software ...

    布隆过滤器在网页去重中的应用

    布隆过滤器在网页去重中的应用 , 海量数据处理中的一个绝好应用

    用于扩展布隆过滤器 的 LUA Redis 脚本_JavaScript_代码_相关文件_下载

    add.lua,cas.lua并且是用于Redis的缩放布隆过滤器check.lua的三个 lua 脚本 layer-add.lua并且是用于Redis的缩放分层布隆过滤器later-check.lua的两个 lua 脚本 这些脚本将使用Redis中的EVAL命令执行。 这些脚本...

Global site tag (gtag.js) - Google Analytics