import java.util.HashMap;
import java.util.Map;
import java.util.Set;
/**
* LRU算法问题:
* 某虚拟存储器采用页式管理,主存容量为4个页面,使用LRU替换算法,若程序访存的虚页地址流为:
* 0, 7, 0, 6, 7, 1, 6, 3, 0, 7, 2, 7, 1, 4, 0, 2,计算该程序使用主存实页位置的过程。
*
* @author Jzl
*
*/
public class LRU {
private static final int NUM = 4;// 主存容量
private static final int DEFAULT = -1;//主存页面的默认值
public static void main(String[] args) {
int[] src = { 0, 7, 0, 6, 7, 1, 6, 3, 0, 7, 2, 7, 1, 4, 0, 2 };
int[] defValue = { DEFAULT, 0 };// 主存实页{当前值,未被使用的次数}
// 程序使用主存实页位置的过程信息,数据结构为:主存实页Map<第几个实页,{当前值,未被使用的次数}>
Map<Integer, int[]> desMap = new HashMap<Integer, int[]>(NUM);
for (int i = 0; i < NUM; i++) {
desMap.put(i, defValue);// 初始化主存的NUM个实页为默认值
}
for (int i = 0; i < src.length; i++) {
Map<Integer, int[]> tempMap = new HashMap<Integer, int[]>(NUM);
for (int j = 0; j < NUM; j++) {
// 主存实页{当前值,未被使用的次数},先把所有未被使用的次数加1
int[] value = { desMap.get(j)[0], desMap.get(j)[1] + 1 };
tempMap.put(j, value);
}
boolean flag = false;// 是否访存成功
for (int j = 0; j < NUM; j++) {
int[] temp = { desMap.get(j)[0], desMap.get(j)[1] };
if (temp[0] == src[i]) {
// 命中,该页已经使用,并且值等于src[i],未被使用的次数清0
System.out.println("命中:src[" + i + "],值为:" + src[i]);
int[] value = { tempMap.get(j)[0], 0 };
tempMap.put(j, value);
flag = true;
break;
} else if (temp[0] == DEFAULT && temp[1] == i) {
// 该页没有使用,放置src[i],接着进行判断src[i+1]
int[] value = temp;
value[0] = src[i];
value[1] = 0;// 将未被使用的次数清零
tempMap.put(j, value);// 覆盖tempMap中之前的值
flag = true;
break;
} else if (temp[0] != DEFAULT) {
// 该页已经使用,并且值不等于src[i],进行判断des[j+1]
flag = false;
continue;
}
}
// 所有主存页面已经被使用,且未命中,则遍历tempMap,进行LRU式替换
if (!flag) {
int key = 0;// 假设为当前访问次数的最大的实页号
int value2 = 0;// 最大的未被使用的次数
for (int j = 0; j < NUM; j++) {
if (tempMap.get(j)[1] > value2) {
value2 = tempMap.get(j)[1];
key = j;
continue;
}
}
int[] value = { src[i], 0 };
tempMap.put(key, value);
flag = true;
}
desMap = tempMap;
System.out.print("第" + i + "次遍历desMap:");
listMap(desMap);
}
}
public static void listMap(Map<Integer, int[]> map) {
Set<Integer> keySet = map.keySet();
for (int key : keySet) {
System.out.print(key + ":[" + map.get(key)[0] + ","
+ map.get(key)[1] + "]\t");
}
System.out.println();
}
}
分享到:
相关推荐
ysoserial是一个用于生成利用不安全的Java对象反序列化的有效负载的概念验证工具。它包含一系列在常见Java库中发现的"gadget chains",可以在特定条件下利用执行不安全的反序列化操作的Java应用程序。ysoserial项目最初在2015年AppSecCali会议上提出,包含针对Apache Commons Collections(3.x和4.x版本)、Spring Beans/Core(4.x版本)和Groovy(2.3.x版本)的利用链
1、嵌入式物联网单片机项目开发例程,简单、方便、好用,节省开发时间。 2、代码使用IAR软件开发,当前在CC2530上运行,如果是其他型号芯片,请自行移植。 3、软件下载时,请注意接上硬件,并确认烧录器连接正常。 4、有偿指导v:wulianjishu666; 5、如果接入其他传感器,请查看账号发布的其他资料。 6、单片机与模块的接线,在代码当中均有定义,请自行对照。 7、若硬件有差异,请根据自身情况调整代码,程序仅供参考学习。 8、代码有注释说明,请耐心阅读。 9、例程具有一定专业性,非专业人士请谨慎操作。
YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
**Oracle 10g DBA学习手册:安装Oracle和构建数据库** **目的:** 本章节旨在指导您完成Oracle数据库软件的安装和数据库的创建。您将通过Oracle Universal Installer (OUI)了解软件安装过程,并学习如何利用Database Configuration Assistant (DBCA)创建附加数据库。 **主题概览:** 1. 利用Oracle Universal Installer (OUI)安装软件 2. 利用Database Configuration Assistant (DBCA)创建数据库 **第2章:Oracle软件的安装与数据库构建** **Oracle Universal Installer (OUI)的运用:** Oracle Universal Installer (OUI)是一个图形用户界面(GUI)工具,它允许您查看、安装和卸载机器上的Oracle软件。通过OUI,您可以轻松地管理Oracle软件的安装和维护。 **安装步骤:** 以下是使用OUI安装Oracle软件并创建数据库的具体步骤:
消防验收过程服务--现场记录表.doc
数据库管理\09-10年第1学期数据库期末考试试卷A(改卷参考).doc。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
职业暴露后的处理流程.docx
Java Web开发短消息系统
项目包含完整前后端源码和数据库文件 环境说明: 开发语言:Java 框架:ssm,mybatis JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3 服务器:tomcat7
这是一款可以配置过滤目录及过滤的文件后缀的工具,并且支持多个项目同时输出导出,并过滤指定不需要导出的目录及文件后缀。 导出后将会保留原有的路径,并在新的文件夹中体现。
Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
YOLO算法-挖掘机与火焰数据集-7735张图像带标签-挖掘机.zip
操作系统实验 Ucore lab5
IMG_5950.jpg
竞选报价评分表.docx
java系统,mysql、springboot等框架
1、嵌入式物联网单片机项目开发例程,简单、方便、好用,节省开发时间。 2、代码使用IAR软件开发,当前在CC2530上运行,如果是其他型号芯片,请自行移植。 3、软件下载时,请注意接上硬件,并确认烧录器连接正常。 4、有偿指导v:wulianjishu666; 5、如果接入其他传感器,请查看账号发布的其他资料。 6、单片机与模块的接线,在代码当中均有定义,请自行对照。 7、若硬件有差异,请根据自身情况调整代码,程序仅供参考学习。 8、代码有注释说明,请耐心阅读。 9、例程具有一定专业性,非专业人士请谨慎操作。
YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
内容概要:本文详细讲解了搜索引擎的基础原理,特别是索引机制、优化 like 前缀模糊查询的方法、建立索引的标准以及针对中文的分词处理。文章进一步深入探讨了Lucene,包括它的使用场景、特性、框架结构、Maven引入方法,尤其是Analyzer及其TokenStream的实现细节,以及自定义Analyzer的具体步骤和示例代码。 适合人群:数据库管理员、后端开发者以及希望深入了解搜索引擎底层实现的技术人员。 使用场景及目标:适用于那些需要优化数据库查询性能、实施或改进搜索引擎技术的场景。主要目标在于提高数据库的访问效率,实现高效的数据检索。 阅读建议:由于文章涉及大量的技术术语和实现细节,建议在阅读过程中对照实际开发项目,结合示例代码进行实践操作,有助于更好地理解和吸收知识点。