`

Java语言中的反射机制

阅读更多
摘要
Reflection 是Java被视为动态(或准动态)语言的一个关键性质。这个机制允许程序在运行时透过Reflection APIs取得任何一个已知名称的class的内部信息,包括其modifiers(诸如public, static 等等)、superclass(例如Object)、实现之interfaces(例如Cloneable),也包括fields和methods的所有信息,并可于运行时改变fields内容或唤起methods。本文借由实例,大面积示范Reflection APIs。

关于本文:
读者基础:具备Java 语言基础。
本文适用工具:JDK1.5

关键词:
Introspection(内省、内观)
Reflection(反射)


有时候我们说某个语言具有很强的动态性,有时候我们会区分动态和静态的不同技术与作法。我们朗朗上口动态绑定(dynamic binding)、动态链接(dynamic linking)、动态加载(dynamic loading)等。然而“动态”一词其实没有绝对而普遍适用的严格定义,有时候甚至像对象导向当初被导入编程领域一样,一人一把号,各吹各的调。

一般而言,开发者社群说到动态语言,大致认同的一个定义是:“程序运行时,允许改变程序结构或变量类型,这种语言称为动态语言”。从这个观点看,Perl,Python,Ruby是动态语言,C++,Java,C#不是动态语言。

尽管在这样的定义与分类下Java不是动态语言,它却有着一个非常突出的动态相关机制:Reflection。这个字的意思是“反射、映象、倒影”,用在Java身上指的是我们可以于运行时加载、探知、使用编译期间完全未知的classes。换句话说,Java程序可以加载一个运行时才得知名称的class,获悉其完整构造(但不包括methods定义),并生成其对象实体、或对其fields设值、或唤起其methods1。这种“看透class”的能力(the ability of the program to examine itself)被称为introspection(内省、内观、反省)。Reflection和introspection是常被并提的两个术语。

Java如何能够做出上述的动态特性呢?这是一个深远话题,本文对此只简单介绍一些概念。整个篇幅最主要还是介绍Reflection APIs,也就是让读者知道如何探索class的结构、如何对某个“运行时才获知名称的class”生成一份实体、为其fields设值、调用其methods。本文将谈到java.lang.Class,以及java.lang.reflect中的Method、Field、Constructor等等classes。

“Class”class
众所周知Java有个Object class,是所有Java classes的继承根源,其内声明了数个应该在所有Java class中被改写的methods:hashCode()、equals()、clone()、toString()、getClass()等。其中getClass()返回一个Class object。

Class class十分特殊。它和一般classes一样继承自Object,其实体用以表达Java程序运行时的classes和interfaces,也用来表达enum、array、primitive Java types(boolean, byte, char, short, int, long, float, double)以及关键词void。当一个class被加载,或当加载器(class loader)的defineClass()被JVM调用,JVM 便自动产生一个Class object。如果您想借由“修改Java标准库源码”来观察Class object的实际生成时机(例如在Class的constructor内添加一个println()),不能够!因为Class并没有public constructor(见图1)。本文最后我会拨一小块篇幅顺带谈谈Java标准库源码的改动办法。

Class是Reflection故事起源。针对任何您想探勘的class,唯有先为它产生一个Class object,接下来才能经由后者唤起为数十多个的Reflection APIs。这些APIs将在稍后的探险活动中一一亮相。

#001 public final
#002 class Class implements java.io.Serializable,
#003 java.lang.reflect.GenericDeclaration,
#004 java.lang.reflect.Type,
#005 java.lang.reflect.AnnotatedElement {
#006     private Class() {}
#007     public String toString() {
#008         return ( isInterface() ? "interface " :
#009         (isPrimitive() ? "" : "class "))
#010     + getName();
#011 }
...
图1:Class class片段。注意它的private empty ctor,意指不允许任何人经由编程方式产生Class object。是的,其object 只能由JVM 产生。

“Class” object的取得途径
Java允许我们从多种管道为一个class生成对应的Class object。图2是一份整理。
Class object 诞生管道    示例
运用getClass()
注:每个class 都有此函数    String str = "abc";
Class c1 = str.getClass();
运用
Class.getSuperclass()2    Button b = new Button();
Class c1 = b.getClass();
Class c2 = c1.getSuperclass();
运用static method
Class.forName()
(最常被使用)    Class c1 = Class.forName ("java.lang.String");
Class c2 = Class.forName ("java.awt.Button");
Class c3 = Class.forName ("java.util.LinkedList$Entry");
Class c4 = Class.forName ("I");
Class c5 = Class.forName ("[I");
运用
.class 语法    Class c1 = String.class;
Class c2 = java.awt.Button.class;
Class c3 = Main.InnerClass.class;
Class c4 = int.class;
Class c5 = int[].class;
运用
primitive wrapper classes
的TYPE 语法
     Class c1 = Boolean.TYPE;
Class c2 = Byte.TYPE;
Class c3 = Character.TYPE;
Class c4 = Short.TYPE;
Class c5 = Integer.TYPE;
Class c6 = Long.TYPE;
Class c7 = Float.TYPE;
Class c8 = Double.TYPE;
Class c9 = Void.TYPE;
图2:Java 允许多种管道生成Class object。

Java classes 组成分析
首先容我以图3的java.util.LinkedList为例,将Java class的定义大卸八块,每一块分别对应图4所示的Reflection API。图5则是“获得class各区块信息”的程序示例及执行结果,它们都取自本文示例程序的对应片段。

package java.util;                         //(1)
import java.lang.*;                     //(2)
public class LinkedList                 //(3)(4)(5)
extends AbstractSequentialList         //(6)
implements List, Queue,
Cloneable, java.io.Serializable         //(7)
{
private static class Entry { … }//(8)
public LinkedList() { … }             //(9)
public LinkedList(Collection c) { … }
public E getFirst() { … }             //(10)
public E getLast() { … }
private transient Entry header = …;    //(11)
private transient int size = 0;
}
图3:将一个Java class 大卸八块,每块相应于一个或一组Reflection APIs(图4)。

Java classes 各成份所对应的Reflection APIs
图3的各个Java class成份,分别对应于图4的Reflection API,其中出现的Package、Method、Constructor、Field等等classes,都定义于java.lang.reflect。
Java class 内部模块(参见图3)    Java class 内部模块说明    相应之Reflection API,多半为Class methods。    返回值类型(return type)
(1) package    class隶属哪个package    getPackage()    Package
(2) import    class导入哪些classes    无直接对应之API。
解决办法见图5-2。    
(3) modifier    class(或methods, fields)的属性
     int getModifiers()
Modifier.toString(int)
Modifier.isInterface(int)    int
String
bool
(4) class name or interface name    class/interface    名称getName()    String
(5) type parameters    参数化类型的名称    getTypeParameters()     TypeVariable []
(6) base class    base class(只可能一个)    getSuperClass()    Class
(7) implemented interfaces    实现有哪些interfaces    getInterfaces()    Class[]

(8) inner classes    内部classes    getDeclaredClasses()    Class[]
(8') outer class    如果我们观察的class 本身是inner classes,那么相对它就会有个outer class。    getDeclaringClass()    Class
(9) constructors    构造函数getDeclaredConstructors()    不论 public 或private 或其它access level,皆可获得。另有功能近似之取得函数。    Constructor[]
(10) methods    操作函数getDeclaredMethods()    不论 public 或private 或其它access level,皆可获得。另有功能近似之取得函数。    Method[]
(11) fields    字段(成员变量)    getDeclaredFields()不论 public 或private 或其它access level,皆可获得。另有功能近似之取得函数。    Field[]
图4:Java class大卸八块后(如图3),每一块所对应的Reflection API。本表并非
Reflection APIs 的全部。

Java Reflection API 运用示例
图5示范图4提过的每一个Reflection API,及其执行结果。程序中出现的tName()是个辅助函数,可将其第一自变量所代表的“Java class完整路径字符串”剥除路径部分,留下class名称,储存到第二自变量所代表的一个hashtable去并返回(如果第二自变量为null,就不储存而只是返回)。

#001 Class c = null;
#002 c = Class.forName(args[0]);
#003
#004 Package p;
#005 p = c.getPackage();
#006
#007 if (p != null)
#008     System.out.println("package "+p.getName()+";");

执行结果(例):
package java.util;
图5-1:找出class 隶属的package。其中的c将继续沿用于以下各程序片段。

#001 ff = c.getDeclaredFields();
#002 for (int i = 0; i < ff.length; i++)
#003     x = tName(ff[i].getType().getName(), classRef);
#004
#005 cn = c.getDeclaredConstructors();
#006 for (int i = 0; i < cn.length; i++) {
#007     Class cx[] = cn[i].getParameterTypes();
#008     for (int j = 0; j < cx.length; j++)
#009         x = tName(cx[j].getName(), classRef);
#010 }
#011
#012 mm = c.getDeclaredMethods();
#013 for (int i = 0; i < mm.length; i++) {
#014     x = tName(mm[i].getReturnType().getName(), classRef);
#015     Class cx[] = mm[i].getParameterTypes();
#016     for (int j = 0; j < cx.length; j++)
#017         x = tName(cx[j].getName(), classRef);
#018 }
#019 classRef.remove(c.getName()); //不必记录自己(不需import 自己)

执行结果(例):
import java.util.ListIterator;
import java.lang.Object;
import java.util.LinkedList$Entry;
import java.util.Collection;
import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;
图5-2:找出导入的classes,动作细节详见内文说明。

#001 int mod = c.getModifiers();
#002 System.out.print(Modifier.toString(mod)); //整个modifier
#003
#004 if (Modifier.isInterface(mod))
#005     System.out.print(" "); //关键词 "interface" 已含于modifier
#006 else
#007     System.out.print(" class "); //关键词 "class"
#008 System.out.print(tName(c.getName(), null)); //class 名称

执行结果(例):
public class LinkedList
图5-3:找出class或interface 的名称,及其属性(modifiers)。

#001 TypeVariable[] tv;
#002 tv = c.getTypeParameters(); //warning: unchecked conversion
#003 for (int i = 0; i < tv.length; i++) {
#004     x = tName(tv[i].getName(), null); //例如 E,K,V...
#005     if (i == 0) //第一个
#006         System.out.print("<" + x);
#007     else //非第一个
#008         System.out.print("," + x);
#009     if (i == tv.length-1) //最后一个
#010         System.out.println(">");
#011 }

执行结果(例):
public abstract interface Map
或 public class LinkedList
图5-4:找出parameterized types 的名称

#001 Class supClass;
#002 supClass = c.getSuperclass();
#003 if (supClass != null) //如果有super class
#004     System.out.print(" extends" +
#005 tName(supClass.getName(),classRef));

执行结果(例):
public class LinkedList
extends AbstractSequentialList,
图5-5:找出base class。执行结果多出一个不该有的逗号于尾端。此非本处重点,为简化计,不多做处理。

#001 Class cc[];
#002 Class ctmp;
#003 //找出所有被实现的interfaces
#004 cc = c.getInterfaces();
#005 if (cc.length != 0)
#006     System.out.print(", \r\n" + " implements "); //关键词
#007 for (Class cite : cc) //JDK1.5 新式循环写法
#008     System.out.print(tName(cite.getName(), null)+", ");

执行结果(例):
public class LinkedList
extends AbstractSequentialList,
implements List, Queue, Cloneable, Serializable,
图5-6:找出implemented interfaces。执行结果多出一个不该有的逗号于尾端。此非本处重点,为简化计,不多做处理。

#001 cc = c.getDeclaredClasses(); //找出inner classes
#002 for (Class cite : cc)
#003     System.out.println(tName(cite.getName(), null));
#004
#005 ctmp = c.getDeclaringClass(); //找出outer classes
#006 if (ctmp != null)
#007     System.out.println(ctmp.getName());

执行结果(例):
LinkedList$Entry
LinkedList$ListItr
图5-7:找出inner classes 和outer class

#001 Constructor cn[];
#002 cn = c.getDeclaredConstructors();
#003 for (int i = 0; i < cn.length; i++) {
#004     int md = cn[i].getModifiers();
#005     System.out.print(" " + Modifier.toString(md) + " " +
#006     cn[i].getName());
#007     Class cx[] = cn[i].getParameterTypes();
#008     System.out.print("(");
#009     for (int j = 0; j < cx.length; j++) {
#010         System.out.print(tName(cx[j].getName(), null));
#011         if (j < (cx.length - 1)) System.out.print(", ");
#012     }
#013     System.out.print(")");
#014 }

执行结果(例):
public java.util.LinkedList(Collection)
public java.util.LinkedList()
图5-8a:找出所有constructors

#004 System.out.println(cn[i].toGenericString());

执行结果(例):
public java.util.LinkedList(java.util.Collection)
public java.util.LinkedList()
图5-8b:找出所有constructors。本例在for 循环内使用toGenericString(),省事。

#001 Method mm[];
#002 mm = c.getDeclaredMethods();
#003 for (int i = 0; i < mm.length; i++) {
#004     int md = mm[i].getModifiers();
#005     System.out.print(" "+Modifier.toString(md)+" "+
#006     tName(mm[i].getReturnType().getName(), null)+" "+
#007     mm[i].getName());
#008     Class cx[] = mm[i].getParameterTypes();
#009     System.out.print("(");
#010     for (int j = 0; j < cx.length; j++) {
#011         System.out.print(tName(cx[j].getName(), null));
#012     if (j < (cx.length - 1)) System.out.print(", ");
#013     }
#014     System.out.print(")");
#015 }

执行结果(例):
public Object get(int)
public int size()
图5-9a:找出所有methods

#004 System.out.println(mm[i].toGenericString());

public E java.util.LinkedList.get(int)
public int java.util.LinkedList.size()
图5-9b:找出所有methods。本例在for 循环内使用toGenericString(),省事。

#001 Field ff[];
#002 ff = c.getDeclaredFields();
#003 for (int i = 0; i < ff.length; i++) {
#004     int md = ff[i].getModifiers();
#005     System.out.println(" "+Modifier.toString(md)+" "+
#006     tName(ff[i].getType().getName(), null) +" "+
#007     ff[i].getName()+";");
#008 }

执行结果(例):
private transient LinkedList$Entry header;
private transient int size;
图5-10a:找出所有fields

#004 System.out.println("G: " + ff[i].toGenericString());

private transient java.util.LinkedList.java.util.LinkedList$Entry ??
java.util.LinkedList.header
private transient int java.util.LinkedList.size
图5-10b:找出所有fields。本例在for 循环内使用toGenericString(),省事。

找出class参用(导入)的所有classes
没有直接可用的Reflection API可以为我们找出某个class参用的所有其它classes。要获得这项信息,必须做苦工,一步一脚印逐一记录。我们必须观察所有fields的类型、所有methods(包括constructors)的参数类型和回返类型,剔除重复,留下唯一。这正是为什么图5-2程序代码要为tName()指定一个hashtable(而非一个null)做为第二自变量的缘故:hashtable可为我们储存元素(本例为字符串),又保证不重复。

本文讨论至此,几乎可以还原一个class的原貌(唯有methods 和ctors的定义无法取得)。接下来讨论Reflection 的另三个动态性质:(1) 运行时生成instances,(2) 执
行期唤起methods,(3) 运行时改动fields。

运行时生成instances
欲生成对象实体,在Reflection 动态机制中有两种作法,一个针对“无自变量ctor”,
一个针对“带参数ctor”。图6是面对“无自变量ctor”的例子。如果欲调用的是“带参数ctor“就比较麻烦些,图7是个例子,其中不再调用Class的newInstance(),而是调用Constructor 的newInstance()。图7首先准备一个Class[]做为ctor的参数类型(本例指定为一个double和一个int),然后以此为自变量调用getConstructor(),获得一个专属ctor。接下来再准备一个Object[] 做为ctor实参值(本例指定3.14159和125),调用上述专属ctor的newInstance()。

#001 Class c = Class.forName("DynTest");
#002 Object obj = null;
#003 obj = c.newInstance(); //不带自变量
#004 System.out.println(obj);
图6:动态生成“Class object 所对应之class”的对象实体;无自变量。

#001 Class c = Class.forName("DynTest");
#002 Class[] pTypes = new Class[] { double.class, int.class };
#003 Constructor ctor = c.getConstructor(pTypes);
#004 //指定parameter list,便可获得特定之ctor
#005
#006 Object obj = null;
#007 Object[] arg = new Object[] {3.14159, 125}; //自变量
#008 obj = ctor.newInstance(arg);
#009 System.out.println(obj);
图7:动态生成“Class object 对应之class”的对象实体;自变量以Object[]表示。

运行时调用methods
这个动作和上述调用“带参数之ctor”相当类似。首先准备一个Class[]做为ctor的参数类型(本例指定其中一个是String,另一个是Hashtable),然后以此为自变量调用getMethod(),获得特定的Method object。接下来准备一个Object[]放置自变量,然后调用上述所得之特定Method object的invoke(),如图8。知道为什么索取Method object时不需指定回返类型吗?因为method overloading机制要求signature(署名式)必须唯一,而回返类型并非signature的一个成份。换句话说,只要指定了method名称和参数列,就一定指出了一个独一无二的method。

#001 public String func(String s, Hashtable ht)
#002 {
#003 …System.out.println("func invoked"); return s;
#004 }
#005 public static void main(String args[])
#006 {
#007 Class c = Class.forName("Test");
#008 Class ptypes[] = new Class[2];
#009 ptypes[0] = Class.forName("java.lang.String");
#010 ptypes[1] = Class.forName("java.util.Hashtable");
#011 Method m = c.getMethod("func",ptypes);
#012 Test obj = new Test();
#013 Object args[] = new Object[2];
#014 arg[0] = new String("Hello,world");
#015 arg[1] = null;
#016 Object r = m.invoke(obj, arg);
#017 Integer rval = (String)r;
#018 System.out.println(rval);
#019 }
图8:动态唤起method

运行时变更fields内容
与先前两个动作相比,“变更field内容”轻松多了,因为它不需要参数和自变量。首先调用Class的getField()并指定field名称。获得特定的Field object之后便可直接调用Field的get()和set(),如图9。

#001 public class Test {
#002 public double d;
#003
#004 public static void main(String args[])
#005 {
#006 Class c = Class.forName("Test");
#007 Field f = c.getField("d"); //指定field 名称
#008 Test obj = new Test();
#009 System.out.println("d= " + (Double)f.get(obj));
#010 f.set(obj, 12.34);
#011 System.out.println("d= " + obj.d);
#012 }
#013 }
图9:动态变更field 内容

Java 源码改动办法
先前我曾提到,原本想借由“改动Java标准库源码”来测知Class object的生成,但由于其ctor原始设计为private,也就是说不可能透过这个管道生成Class object(而是由class loader负责生成),因此“在ctor中打印出某种信息”的企图也就失去了意义。

这里我要谈点题外话:如何修改Java标准库源码并让它反应到我们的应用程序来。假设我想修改java.lang.Class,让它在某些情况下打印某种信息。首先必须找出标准源码!当你下载JDK 套件并安装妥当,你会发现jdk150\src\java\lang 目录(见图10)之中有Class.java,这就是我们此次行动的标准源码。备份后加以修改,编译获得Class.class。接下来准备将.class 搬移到jdk150\jre\lib\endorsed(见图10)。

这是一个十分特别的目录,class loader将优先从该处读取内含classes的.jar文件??成功的条件是.jar内的classes压缩路径必须和Java标准库的路径完全相同。为此,我们可以将刚才做出的Class.class先搬到一个为此目的而刻意做出来的\java\lang目录中,压缩为foo.zip(任意命名,唯需夹带路径java\lang),再将这个foo.zip搬到jdk150\jre\lib\endorsed并改名为foo.jar。此后你的应用程序便会优先用上这里的java.lang.Class。整个过程可写成一个批处理文件(batch file),如图11,在DOS Box中使用。
 

图10:JDK1.5 安装后的目录组织。其中的endorsed 是我新建。

del e:\java\lang\*.class //清理干净
del c:\jdk150\jre\lib\endorsed\foo.jar //清理干净
c:
cd c:\jdk150\src\java\lang
javac -Xlint:unchecked Class.java //编译源码
javac -Xlint:unchecked ClassLoader.java //编译另一个源码(如有必要)
move *.class e:\java\lang //搬移至刻意制造的目录中
e:
cd e:\java\lang //以下压缩至适当目录
pkzipc -add -path=root c:\jdk150\jre\lib\endorsed\foo.jar *.class
cd e:\test //进入测试目录
javac -Xlint:unchecked Test.java //编译测试程序
java Test //执行测试程序
图11:一个可在DOS Box中使用的批处理文件(batch file),用以自动化java.lang.Class
的修改动作。Pkzipc(.exe)是个命令列压缩工具,add和path都是其命令。

更多信息
以下是视野所及与本文主题相关的更多讨论。这些信息可以弥补因文章篇幅限制而带来的不足,或带给您更多视野。

         "Take an in-depth look at the Java Reflection API -- Learn about the new Java 1.1 tools forfinding out information about classes", by Chuck McManis。此篇文章所附程序代码是本文示例程序的主要依据(本文示例程序示范了更多Reflection APIs,并采用JDK1.5 新式的for-loop 写法)。
         "Take a look inside Java classes -- Learn to deduce properties of a Java class from inside aJava program", by Chuck McManis。
         "The basics of Java class loaders -- The fundamentals of this key component of the Javaarchitecture", by Chuck McManis。
         《The Java Tutorial Continued》, Sun microsystems. Lesson58-61, "Reflection".

注1用过诸如MFC这类所谓 Application Framework的程序员也许知道,MFC有所谓的dynamic creation。但它并不等同于Java的动态加载或动态辨识;所有能够在MFC程序中起作用的classes,都必须先在编译期被编译器“看见”。
分享到:
评论

相关推荐

    Java中的反射机制

    ### Java中的反射机制 #### 一、反射的概念 反射的概念最早由Smith于1982年提出,是指程序能够访问、检测和修改其自身状态或行为的能力。这一概念的引入促进了计算机科学领域对反射性的研究,并迅速被应用于程序...

    Java语言的反射机制.pdf

    Java语言的反射机制是Java语言中一个非常重要的机制,它允许程序在运行时加载、探知、使用编译期间完全未知的class。这种“看透class”的能力被称为introspection。反射机制的概念是由Smith在1982年首次提出的,主要...

    java面试题--反射机制

    `Class`类在Java反射机制中扮演着核心角色,它是所有Java类的运行时表示。`Class`对象可以由以下几种方式获取: 1. **通过类的`Class`属性获取**:如`String.class`。 2. **通过对象的`getClass()`方法获取**:如`...

    Java 语言的反射机制

    Java 反射机制是 Java 语言提供的一种强大的工具,它允许程序在运行时检查和操作对象的内部结构,包括类的属性、方法以及构造器。通过反射,开发者可以在不知道对象具体类型的情况下,动态地获取类的信息并进行操作...

    Java语言的反射机制.rar

    Java 反射机制主要提供了以下功能: l 在运行时判断任意一个对象所属的类; l 在运行时构造任意一个类的对象; l 在运行时判断任意一个类所具有的成员变量和方法; l 在运行时调用任意一个对象的方法; l 生成...

    JAVA基础--JAVA中的反射机制详解

    JAVA 反射机制是 Java 语言中的一种动态获取信息和动态调用对象方法的功能。它允许程序在运行时获取类的信息、构造对象、获取成员变量和方法、调用对象的方法等。 Java 反射机制主要提供了以下功能: 1. 在运行时...

    java反射机制详解

    反射机制是Java编程语言的一个核心特性,它允许程序在运行时动态地获取类的信息,并且能够动态地创建对象和调用对象的方法。简单来说,反射机制使得Java程序可以自我检查、自我调整。 在Java中,所有的类型都是`...

    JAVA语言中的反射机制.doc

    JAVA语言中的反射机制

    Java反射机制 Java反射机制

    Java反射机制是Java语言的一个重要特性,它允许程序在运行时获取类的信息并操作对象。Java反射机制的主要作用包括:获取类的所有属性和方法、构造动态实例、调用类的方法等。通过反射,程序可以动态地创建对象和调用...

    JAVA反射机制应用

    在JAVA反射机制中,Class类和Field类、Method类、Constructor类是最重要的三个类,它们提供了访问类、字段、方法和构造函数的能力。 在获取某个对象的属性时,我们可以使用getField方法,例如: ```java public ...

    Java反射机制

    Java反射机制是Java语言的一种重要特性,使得Java成为了一种动态性很强的语言。通过反射,可以在程序运行时获取类的信息,包括类名、父类、接口、字段、方法等,并能够调用类的任意方法。这种能力对于构建高度灵活和...

    JAVA中的反射机制(内含大量实例).doc

    ### JAVA中的反射机制详解 #### 一、反射机制概述 反射是Java编程语言的一个核心特性,它使得程序能够在运行时动态地访问、检测和修改其自身的结构和行为。这一概念最早由Smith在1982年提出,并迅速引起了计算机...

    实战java反射机制-让你迅速认识java强大的反射机制

    Java反射机制是Java编程语言中的一个强大特性,它允许程序在运行时检查和操作类、接口、字段和方法的信息,甚至动态地创建对象并调用其方法。通过反射,开发者可以实现高度灵活和动态的代码,这对于框架开发、元编程...

    Reflection_in_Java.zip_in_java 反射_java 反射机制_java反射_反射机制

    在Java反射机制中,`AccessibleObject`接口扮演着关键角色。它是`Constructor`、`Method`和`Field`的超接口,提供了`setAccessible(true)`方法,该方法可以绕过Java的访问权限检查,使私有成员可访问。但这应谨慎...

Global site tag (gtag.js) - Google Analytics