- 浏览: 388676 次
- 性别:
- 来自: 上海
文章分类
- 全部博客 (215)
- ubuntu (27)
- 虚拟机 (13)
- 数据库 (29)
- JAVA (40)
- 搜索 (23)
- 开发工具 (2)
- 产品 (2)
- 工具 (1)
- 应用服务器 (5)
- linux (17)
- log (1)
- 多线程 (3)
- 异常 (1)
- shell (6)
- 12306 ;互联网 (1)
- 持续集成&Hudson (4)
- js (1)
- JAVA OR-Map (1)
- 漏洞 (1)
- svn (1)
- MAVEN (3)
- 架构 (1)
- windows (1)
- json (1)
- web (3)
- jenkins (2)
- iptables (2)
- JAVA ssh (0)
- 项目管理 (1)
- tomcat (1)
- 安全 (1)
- 数据库 mysql (1)
- 性能 (1)
最新评论
-
sbwfgihc:
怎么用的啊,
<转>mysql 树查询语句 -
panghaoyu:
实现一个智能提示功能需要ajax、数据库、jsp/php、算法 ...
<转>Solr Suggest实现搜索智能提示 -
songsove:
请问您qq多少
solr 对拼音搜索和拼音首字母搜索的支持 -
panghaoyu:
实现一个智能提示功能需要ajax、数据库、jsp/php、算法 ...
<转>Solr Suggest实现搜索智能提示 -
norain1988:
这样就可以实现相关搜索了吗
solr 百度相关搜索类似功能的实现
Lucene搜索的api的类主要有4个 IndexSearcher ,Query(包括子类),QueryParser,Hits
一:IndexSearcher是搜索的入口,他的search方法提供了搜索功能
Query有很多子类, 各种不同的子类代表了不同的查询条件,下文详述
QueryParser是一个非常通用的帮助类,他的作用是把用户输入的文本转换为内置的Query对象(大多数web搜索引擎都提供一个查询输入框来让用户输入查询条件)。QueryParser内置提供了很多语法来使使用可以输入各种高级条件的Query。比如: "Hello AND world"会被解析为一个AND关系的BooleanQuery,他包含两个TermQuery(Hell和world)。这些语法虽然强大,但都针对英文设计,对我们需要中文搜索来说都不需要了解太多的Query类型,一般几个简单的就够用了。QueryParser的使用如下
QueryParser.parse(String query, String field, Analyzer analyzer) throws ParseException
其中:query是用户输入的内容,field是搜索默认的field(其他field需要显式指定),analyzer是用来将用户输入的内容也作分析处理(分词),一般情况下这里的anaylyzer是index的时候采用的同一analyzer。
另外我们也可以自己构造一个QueryParser: new QueryParser(String field, Analyzer a)(含义同上),这样做的好处是可以自己定义调整一些参数.
搜索结果的处理:Hits对象
Hits对象是搜索结果的集合 主要有下面几个方法
length() ,这个方法记录有多少条结果返回(lazy loading)
doc(n) 返回第n个记录
id(in) 返回第n个记录的Document ID
score(n) 第n个记录的相关度(积分)
由于搜索的结果一般比较大,从性能上考虑,Hits对象并不会真正把所有的结果全部取回,默认情况下是保留前100个记录(对于一般的搜索引擎,100个记录足够了).
分页的处理
100条记录还是太多,我们多半会每页显示20条记录,然后分为若干页显示,对于分页,一般有两个办法
在session中保留indexreader对象和hit对象,翻页的时候提取内容
不使用session,每次都简单处理为重新查询
lucene推荐先使用第二个办法,即每次都重新查询,这样做的好处是简单方便,不需要考虑session的问题,lucene的查询效率也能保证每次查询时间不长,除非真正有了性能问题,否则不用考虑第一个办法。
缓存:RAMDirectory的用法
RAMDirectory对象很好用,通过它,我们可以把一个普通的index完全读取到内存中,用法如下:
RAMDirectory ramDir = new RAMDirectory(dir);
这样的ramdir效率自然比真正的文件系统快很多
Lucene的scoring算法
lucence查询的纪录默认按照相关度排序,这个相关度就是score,scoring的算法是比较复杂的,对于我们做应用的人似乎没有什么帮助,(先说一下Term: 我的理解是Term为一个独立的查询词,用户输入的的查询通过各种分词,大小写处理(正规化),消除stopwords等)以后,会已Term为基本单位),几个关键参数稍微留意一下即可。
Term在文章中出现的频率量,包含同一个Term的文章的频率
field中的boosting参数
term的长度
term在文章中的数量
一般来说,这些参数我们都不可能去调整, 如果你想了解更多,IndexSearcher还提供了一个explain方法, 通过传入一个Query和document ID,你可以得到一个Explaination对象,他是对内部算法信息的简单封装,toString()一下就可以看到详细的说明
二:创建Query:各种query介绍
最普通的TermQuery
TermQuery最普通, 用Term t=new Term("contents","cap"); new TermQuery(t)就可以构造
TermQuery把查询条件视为一个key, 要求和查询内容完全匹配,比如Field.Keyword类型就可以使用TermQuery
RangeQuery
RangeQuery表示一个范围的搜索条件,RangeQuery query = new RangeQuery(begin, end, included);
最后一个boolean值表示是否包含边界条件本身, 用字符表示为"[begin TO end]" 或者"{begin TO end}"
PrefixQuery
顾名思义,就是表示以某某开头的查询, 字符表示为"something*"
BooleanQuery
这个是一个组合的Query,你可以把各种Query添加进去并标明他们的逻辑关系,添加条件用
public void add(Query query, boolean required, boolean prohibited)
方法, 后两个boolean变量是标示AND or NOT三种关系 字符表示为" AND or NOT" 或 "+ -" ,一个BooleanQuery中可以添加多个Query, 如果超过setMaxClauseCount(int)的值(默认1024个)的话,会抛出TooManyClauses错误.
PhraseQuery
表示不严格语句的查询,比如"red pig"要匹配"red fat pig","red fat big pig"等,PhraseQuery所以提供了一个setSlop()参数,在查询中,lucene会尝试调整单词的距离和位置,这个参数表示可以接受调整次数限制,如果实际的内容可以在这么多步内调整为完全匹配,那么就被视为匹配.在默认情况下slop的值是0, 所以默认是不支持非严格匹配的, 通过设置slop参数(比如"red pig"匹配"red fat pig"就需要1个slop来把pig后移动1位),我们可以让lucene来模糊查询. 值得注意的是,PhraseQuery不保证前后单词的次序,在上面的例子中,"pig red"需要2个slop,也就是如果slop如果大于等于2,那么"pig red"也会被认为是匹配的.
WildcardQuery
使用?和*来表示一个或多个字母比如wil*可以匹配 wild ,wila ,wilxaaaa...,值得注意的是,在wildcard中,只要是匹配上的纪录,他们的相关度都是一样的,比如wilxaaaa和wild的对于wil*的相关度就是一样的.
FuzzyQuery
这个Query对中文没有什么用处,他能模糊匹配英文单词(前面的都是词组),比如fuzzy和wuzzy他们可以看成类似, 对于英文的各种时态变化和复数形式,这个FuzzyQuery还算有用,匹配结果的相关度是不一样的.字符表示为 "fuzzy~"
三:QueryParser使用
对于搜索引擎, 很多情况下用户只需要一个输入框就要输入所有的查询条件(比如google), 这时,QueryParser就派上用场了,他的作用就是把各种用户输入转为Query或者Query组, 他把上面提到的Query的字符表示(Query.toString)转化为实际的Query对象,比如"wuzzy~"就会转换为FuzzyQuery, 不过QueryParser用到了Analyzer,所以QueryParser parse过后的Query再toString未必和原来的一样.Query额外的语法有:
分组:Groupping
比如"(a AND b) or C",就是括号分组,很容易理解
FieldSelectiong
QueryParser的查询条件是对默认的Field进行的, 它在QueryParser解析的时候编码指定, 如果用户需要在查询条件中选用另外的Field, 可以使用如下语法: fieldname:fielda, 如果是多个分组,可以用fieldname:(fielda fieldb fieldc)表示.
*号问题
QueryParse默认不允许*号出现在开始部分,这样做的目的主要是为了防止用户误输入*来头导致严重的性能问题(会把所有记录读出)
boosting
通过hello^2.0 可以对hello这个term进行boosting,(我想不到什么用户会这样么bt)
QueryParser是一个准备好的,立即可以工作的帮助类,不过他还是提供了很多参数供程序员调整,首先,我们需要自己构造一个新的QueryParser,然后对他的各种参数来定制
一:IndexSearcher是搜索的入口,他的search方法提供了搜索功能
Query有很多子类, 各种不同的子类代表了不同的查询条件,下文详述
QueryParser是一个非常通用的帮助类,他的作用是把用户输入的文本转换为内置的Query对象(大多数web搜索引擎都提供一个查询输入框来让用户输入查询条件)。QueryParser内置提供了很多语法来使使用可以输入各种高级条件的Query。比如: "Hello AND world"会被解析为一个AND关系的BooleanQuery,他包含两个TermQuery(Hell和world)。这些语法虽然强大,但都针对英文设计,对我们需要中文搜索来说都不需要了解太多的Query类型,一般几个简单的就够用了。QueryParser的使用如下
QueryParser.parse(String query, String field, Analyzer analyzer) throws ParseException
其中:query是用户输入的内容,field是搜索默认的field(其他field需要显式指定),analyzer是用来将用户输入的内容也作分析处理(分词),一般情况下这里的anaylyzer是index的时候采用的同一analyzer。
另外我们也可以自己构造一个QueryParser: new QueryParser(String field, Analyzer a)(含义同上),这样做的好处是可以自己定义调整一些参数.
搜索结果的处理:Hits对象
Hits对象是搜索结果的集合 主要有下面几个方法
length() ,这个方法记录有多少条结果返回(lazy loading)
doc(n) 返回第n个记录
id(in) 返回第n个记录的Document ID
score(n) 第n个记录的相关度(积分)
由于搜索的结果一般比较大,从性能上考虑,Hits对象并不会真正把所有的结果全部取回,默认情况下是保留前100个记录(对于一般的搜索引擎,100个记录足够了).
分页的处理
100条记录还是太多,我们多半会每页显示20条记录,然后分为若干页显示,对于分页,一般有两个办法
在session中保留indexreader对象和hit对象,翻页的时候提取内容
不使用session,每次都简单处理为重新查询
lucene推荐先使用第二个办法,即每次都重新查询,这样做的好处是简单方便,不需要考虑session的问题,lucene的查询效率也能保证每次查询时间不长,除非真正有了性能问题,否则不用考虑第一个办法。
缓存:RAMDirectory的用法
RAMDirectory对象很好用,通过它,我们可以把一个普通的index完全读取到内存中,用法如下:
RAMDirectory ramDir = new RAMDirectory(dir);
这样的ramdir效率自然比真正的文件系统快很多
Lucene的scoring算法
lucence查询的纪录默认按照相关度排序,这个相关度就是score,scoring的算法是比较复杂的,对于我们做应用的人似乎没有什么帮助,(先说一下Term: 我的理解是Term为一个独立的查询词,用户输入的的查询通过各种分词,大小写处理(正规化),消除stopwords等)以后,会已Term为基本单位),几个关键参数稍微留意一下即可。
Term在文章中出现的频率量,包含同一个Term的文章的频率
field中的boosting参数
term的长度
term在文章中的数量
一般来说,这些参数我们都不可能去调整, 如果你想了解更多,IndexSearcher还提供了一个explain方法, 通过传入一个Query和document ID,你可以得到一个Explaination对象,他是对内部算法信息的简单封装,toString()一下就可以看到详细的说明
二:创建Query:各种query介绍
最普通的TermQuery
TermQuery最普通, 用Term t=new Term("contents","cap"); new TermQuery(t)就可以构造
TermQuery把查询条件视为一个key, 要求和查询内容完全匹配,比如Field.Keyword类型就可以使用TermQuery
RangeQuery
RangeQuery表示一个范围的搜索条件,RangeQuery query = new RangeQuery(begin, end, included);
最后一个boolean值表示是否包含边界条件本身, 用字符表示为"[begin TO end]" 或者"{begin TO end}"
PrefixQuery
顾名思义,就是表示以某某开头的查询, 字符表示为"something*"
BooleanQuery
这个是一个组合的Query,你可以把各种Query添加进去并标明他们的逻辑关系,添加条件用
public void add(Query query, boolean required, boolean prohibited)
方法, 后两个boolean变量是标示AND or NOT三种关系 字符表示为" AND or NOT" 或 "+ -" ,一个BooleanQuery中可以添加多个Query, 如果超过setMaxClauseCount(int)的值(默认1024个)的话,会抛出TooManyClauses错误.
PhraseQuery
表示不严格语句的查询,比如"red pig"要匹配"red fat pig","red fat big pig"等,PhraseQuery所以提供了一个setSlop()参数,在查询中,lucene会尝试调整单词的距离和位置,这个参数表示可以接受调整次数限制,如果实际的内容可以在这么多步内调整为完全匹配,那么就被视为匹配.在默认情况下slop的值是0, 所以默认是不支持非严格匹配的, 通过设置slop参数(比如"red pig"匹配"red fat pig"就需要1个slop来把pig后移动1位),我们可以让lucene来模糊查询. 值得注意的是,PhraseQuery不保证前后单词的次序,在上面的例子中,"pig red"需要2个slop,也就是如果slop如果大于等于2,那么"pig red"也会被认为是匹配的.
WildcardQuery
使用?和*来表示一个或多个字母比如wil*可以匹配 wild ,wila ,wilxaaaa...,值得注意的是,在wildcard中,只要是匹配上的纪录,他们的相关度都是一样的,比如wilxaaaa和wild的对于wil*的相关度就是一样的.
FuzzyQuery
这个Query对中文没有什么用处,他能模糊匹配英文单词(前面的都是词组),比如fuzzy和wuzzy他们可以看成类似, 对于英文的各种时态变化和复数形式,这个FuzzyQuery还算有用,匹配结果的相关度是不一样的.字符表示为 "fuzzy~"
三:QueryParser使用
对于搜索引擎, 很多情况下用户只需要一个输入框就要输入所有的查询条件(比如google), 这时,QueryParser就派上用场了,他的作用就是把各种用户输入转为Query或者Query组, 他把上面提到的Query的字符表示(Query.toString)转化为实际的Query对象,比如"wuzzy~"就会转换为FuzzyQuery, 不过QueryParser用到了Analyzer,所以QueryParser parse过后的Query再toString未必和原来的一样.Query额外的语法有:
分组:Groupping
比如"(a AND b) or C",就是括号分组,很容易理解
FieldSelectiong
QueryParser的查询条件是对默认的Field进行的, 它在QueryParser解析的时候编码指定, 如果用户需要在查询条件中选用另外的Field, 可以使用如下语法: fieldname:fielda, 如果是多个分组,可以用fieldname:(fielda fieldb fieldc)表示.
*号问题
QueryParse默认不允许*号出现在开始部分,这样做的目的主要是为了防止用户误输入*来头导致严重的性能问题(会把所有记录读出)
boosting
通过hello^2.0 可以对hello这个term进行boosting,(我想不到什么用户会这样么bt)
QueryParser是一个准备好的,立即可以工作的帮助类,不过他还是提供了很多参数供程序员调整,首先,我们需要自己构造一个新的QueryParser,然后对他的各种参数来定制
发表评论
-
百度GOOGLE的用户鼠标行为分析<转>
2012-08-29 09:37 1525转自:http://www.20ju.com/conte ... -
lucene 一些性能调优建议
2012-08-22 16:12 5574lucene 排序 Lucene默认按照相关度 ... -
<转>庖丁解牛分词之自定义词库[自定义词典]
2012-07-03 10:21 930原链接: http://hi.baidu.com/stone_ ... -
庖丁(Paoding)分词的词典原理解析
2012-07-03 10:14 3671Paoding分词过程中词典 ... -
solr 百度相关搜索类似功能的实现
2012-06-27 16:26 5788这个功能的实现有几种不同的思路。 大概半个月前,我在网 ... -
solr 索引库同步数据库
2012-06-27 14:01 5664对于拼音和拼音首字母的支持,当你在搜商品的时候,如果想输 ... -
solr 对拼音搜索和拼音首字母搜索的支持
2012-06-27 13:52 9107对于拼音和拼音首字母的支持,当你在搜商品的时候,如果想输 ... -
<转>Solr Suggest实现搜索智能提示
2012-06-27 10:15 13962智能提示简介 搜索的智能提示目前是各大搜索的标配应用, ... -
IK的整个分词处理过程
2012-06-26 14:25 11590IK的整个分词处理过 ... -
Solr的检索运算符
2012-06-21 14:47 4247“:” 指定字段查指定值,如返回所有值*:*² “?” 表示 ... -
Solr 学习(5) —- Solr查询语法和参数
2012-06-21 14:25 11622、查询语法 solr的一些查询语法 ... -
Apache Solr schema.xml及solrconfig.xml文件中文注解
2012-06-21 10:55 1207一、字段配置(schema)schema.xml位于so ... -
<转>LUCENE3.0 自学吧 4 TermDocs
2012-06-07 22:13 1248利用TermDocs也是可以得到一些有用的结果。。。代码 ... -
<转>Lucene里经常被聊到的几个话题
2012-06-07 21:54 1276lvpei.cnblogs.com.自己总结的Lucen ... -
<转>浅谈文档索引普遍原理<笔记>
2012-06-07 21:49 1023--lvpei.cnblogs.com 搜索引擎普遍采 ... -
Lucene中Field类很重要
2012-06-07 21:46 8263org.apache.lucene.demo.Index ... -
Lucene架构简单分析
2012-06-06 15:30 1663Lucene简介Lucene 是一个基 ... -
<转>lucene3.0中Field.Index, Field.Store,Field.TermVector详解
2012-06-06 14:49 923lucene在doc.add(new Field(&quo ... -
<转>用于Lucene的各中文分词比较
2012-06-05 09:58 5612对几种中文分析器,从分词准确性和效率两方面进行比较。分析器依次 ... -
Lucene3参考资料
2012-06-05 09:46 1025http://wenku.baidu.com/view/706 ...
相关推荐
**Lucene 2.0 API 和 Lucene 3.0 API 深度解析** Lucene 是一个由 Apache 软件基金会开发的全文搜索引擎库,它为开发者提供了在 Java 应用程序中实现高性能、可扩展的全文搜索功能的能力。Lucene 的 API 设计得相当...
lucene 3.0 API中文帮助,学习的人懂得的
Lucene 3.0.2 API DOC CHM 是开发的必备工具之一
《深入理解Lucene 6.6.2 API与IKAnalyzer分词器》 在信息技术领域,搜索引擎技术扮演着至关重要的角色,而Lucene作为开源全文检索库,为开发者提供了强大的文本搜索功能。本文将深入探讨Lucene 6.6.2版本的API使用...
这个API文档将介绍如何创建、读取和更新索引,以及如何构建和执行查询。它涵盖了Document、Field、Analyzer、IndexWriter、Directory、Query等重要类,这些都是构建高效搜索应用的基础。 `lucene-analyzers-icu-...
Lucene中文API Lucene是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎。Lucene以其方便使用、快速实施以及灵活性受到广泛的关注。它可以方便地嵌入到各种应用中实现针对应用的全文索引、检索功能,本...
在Lucene 3.0.1中,官方API(应用程序编程接口)是开发者理解和使用Lucene的核心工具。API文档详细地阐述了各种类、方法和接口,帮助开发者构建自己的搜索引擎应用。以下是一些关键的知识点: 1. **索引过程**:...
lucene 2.9 API , lucene API,lucene 学习资料,lucene2.9 CHM
**Lucene API 深度解析** Lucene 是一个高性能、全文本搜索库,由 Apache 软件基金会开发并维护。它提供了完整的搜索功能,包括索引、查询、评分和排序,使得开发者能够轻松地在应用程序中实现复杂的全文检索功能。...
《Lucene.2.0.API》是关于开源全文搜索引擎库Lucene的一个重要参考资料,它详尽地记录了Lucene 2.0版本的API接口及其使用方法。Lucene是一个由Apache软件基金会开发的Java全文检索库,它提供了高性能、可扩展的文本...
Apache Lucene.Net API Documentation
java lucene 2.4.0 api 发现网上找不到...就自己做了个
Lucene 是一个强大的开源全文搜索库,由 Java 编写,主要用于为应用程序添加全文检索功能。它不是一个完整的全文搜索引擎应用,而是一个工具包,允许开发者将其集成到自己的软件中,以实现高效、灵活的文本搜索功能...
Apache 出品的开源网络搜索框架 Lucene 5.1.0 Documentation(2015年6月9日)。希望多搞Java所有引擎的朋友有所帮助。
**Lucene 3.0 API 中文帮助文档详解** Lucene 是一个开源的全文检索库,由Apache软件基金会开发并维护。它提供了高级的文本搜索功能,被广泛应用于各种信息检索系统。本篇将深入探讨Lucene 3.0 API的中文帮助文档,...
Lucene API,全称为Apache Lucene,是一个高性能、全文检索库,由Java编写。它是开源软件项目,广泛应用于构建搜索引擎和其他需要高效文本分析和检索的应用程序。Lucene API提供了一整套工具和算法,用于索引、搜索...
在"lucene+api搜索引擎引工具源码"项目中,开发者可能已经封装了 Lucene 的核心功能,使其更易于在 C#.NET 平台上使用。源码可能会包含以下关键组件和概念: 1. **索引创建**:Lucene 允许开发者将文本数据(如文档...
这份文档主要针对的是 Lucene 2.1 版本,虽然版本较旧,但其核心概念和基础API仍然是理解Lucene后续版本的关键。 一、Lucene 的核心组件 1. **Analyzer**: 分析器是Lucene处理文本的核心组件,负责将输入的原始...
核心 Lucene3.6_api.chm 放心下载
《深入理解Lucene 3.0 API:从jar包到实战应用》 Lucene是一个开源全文搜索引擎库,自诞生以来,它已经成为了Java世界中处理文本检索的核心工具。本篇文章将详细探讨Lucene 3.0版本的API,以及如何使用这个jar包...