NoSQL在过去的一年里,逐渐已经成为了家喻户晓的东西,我(54chen)自从去年开始人人网的NoSQL系统Nuclear的研发以来,一直
看NoSQL越来越热,越来越引来大家的围观。受InfoQ中文站编辑之托,特作此文,一来作为过去一年的总结,二来希望对NoSQL系统在国内的发展和
推广尽绵薄之力。
NoSQL背后的两种模式
NoSQL其实并不是什么妖魔鬼怪,相反,NoSQL的真谛其实应该是Not Only
SQL,其产生背景是在数据量和访问量逐渐增大的情况下下,人为地去添加机器或者切分数据到不同的机器,变得越来越困难,人力成本越来越高,于是便开始有
了这样的项目,它们的本意是提高数据存储的自动化程度,减少人为干预的时间,让负载更加均匀等。在国际上,真正的代表之作有来自Google的
BigTable 和Amazon 的Dynamo,他们分别使用了不同的基本原理。
MapReduce
这是历史最久的一种模型,典型的代表是BigTable。Map表示映射,Reduce表示化简。MapReduce通过把对数据集的大规模操作分
发给网络上的每个节点实现可靠性(Map);每个节点会周期性地把完成的工作和状态的更新报告回来(Reduce)。大多数分布式运算可以抽象为
MapReduce操作。Map是把输入Input分解成中间的Key/Value对,Reduce把Key/Value合成最终输出Output。这两
个函数由程序员提供给系统,下层设施把Map和Reduce操作分布在集群上运行。
Dynamo
这里我把Dynamo专门归纳成为了一种,其原因是它与MapReduce有很大的不同,自成一派。先说一下历史,Amazon于2006年推出了
自己的云存储服务S3,2007年其CTO公布了S3的设计方案,从此江湖中就不再太平了,开源项目一个个如雨后春笋般地出现了。比较常见的有
Facebook开发的Cassandra(如果没有记错,在去年浏览他们项目网页的时候,上面还写着他们之中的一个开发人员是Dynamo的设计人员,
现在风头紧,去掉了),还有Linkedin的voldemort,而在国内话,有豆瓣网的beansDB,人人网的nuclear等等。这里我主要讨论
的也是Dynamo的方案细节。
入门基础
Dynamo的意思是发电机,顾名思义,这一整套的方案都像发电机一样,源源不断地提供服务,永不间断。以下内容看上去有点教条,但基本上如果你要理解原理,这每一项都是必须知道的。
CAP原则
先来看历史,Eric A.
Brewer教授,Inktomi公司的创始人,也是berkeley大学的计算机教授,Inktomi是雅虎搜索现在的台端技术核心支持。最主要的是,
他们
(Inktomi公司)在最早的时间里,开始研究分布计算。CAP原则的提出,可以追溯到2000年的时候(可以想象有多么早!),Brewer教授在一
次谈话中,基于他运作Inktomi以及在伯克利大学里的经验,总结出了CAP原则(文末参考资料中有其演讲资料链接)。图一是来自Brewer教授当年
所画的图:
![](http://www.infoq.com/resource/articles/nosql-dynamo/zh/resources/nosql_1.jpg)
图一:
CAP原则当年的PPT
Consistency(一致性):即数据一致性,简单的说,就是数据复制到了N台机器,如果有更新,要N机器的数据是一起更新的。
Availability(可用性):好的响应性能,此项意思主要就是速度。
Partition tolerance(分区容错性):这里是说好的分区方法,体现具体一点,简单地可理解为是节点的可扩展性。
定理:
任何分布式系统只可同时满足二点,没法三者兼顾。
忠告:
架构师不要将精力浪费在如何设计能满足三者的完美分布式系统,而是应该进行取舍。
DHT——分布式哈希表
DHT(Distributed Hash Table,分布式哈希表),它是一种分布式存储寻址方法的统称。就像普通的哈希表,里面保存了key与value的对应关系,一般都能根据一个key去对应到相应的节点,从而得到相对应的value。
这里随带一提,在DHT算法中,一致性哈希作为第一个实用的算法,在大多数系统中都使用了它。一致性哈希基本解决了在P2P环境中最为关键的问题
——如何在动态的网络拓扑中分布存储和路由。每个节点仅需维护少量相邻节点的信息,并且在节点加入/退出系统时,仅有相关的少量节点参与到拓扑的维护中。
至于一致性哈希的细节就不在这里详细说了,要指明的一点是,在Dynamo的数据分区方式之后,其实内部已然是一个对一致性哈希的改造了。
进入Dynamo的世界
有了上面一章里的两个基础介绍之后,我们开始进入Dynamo的世界。
Dynamo的数据分区与作用
在Dynamo的实现中提到一个关键的东西,就是数据分区。
假设我们的数据的key的范围是0到2的64次方(不用怀疑你的数据量会超过它,正常甚至变态情况下你都是超不过的,甚至像伏地魔等其他类Dynamo系
统是使用的
2的32次方),然后设置一个常数,比如说1000,将我们的key的范围分成1000份。然后再将这1000份key的范围均匀分配到所有的节点(s个
节点),这样每个节点负责的分区数就是1000/s份分区。
如图二,假设我们有A、B、C三台机器,然后将我们的分区定义了12个。
![](http://www.infoq.com/resource/articles/nosql-dynamo/zh/resources/nosql_2.jpg)
图二:
三个节点分12个区的数据的情况
因为数据是均匀离散到这个环上的(有人开始会认为数据的key是从1、2、3、4……这样子一直下去的,其实不是的,哈希计算出来的值,都是一个离
散的结果),所以我们每个分区的数据量是大致相等的。从图上我们可以得出,每台机器都分到了三个分区里的数据,并且因为分区是均匀的,在分区数量是相当大
的时候,数据的分布会更加的均匀,与此同时,负载也被均匀地分开了(当然了,如果硬要说你的负载还是只集中在一个分区里,那就不是在这里要讨论的问题了,
有可能是你的哈希函数是不是有什么样的问题了)。
为什么要进行这样的分布呢,分布的好处在于,在有新机器加入的时候,只需要替换原有分区即可,如图三所示:
![](http://www.infoq.com/resource/articles/nosql-dynamo/zh/resources/nosql_3.jpg)
图三:
加入一个新的节点D的情况
同样是图二里的情况,12个分区分到ABC三个节点,图三中就是再进入了一个新的节点D,从图上的重新分布情况可以得出,所有节点里只需要转移四分
之一的数据到新来的节点即可,同时,新节点的负载也伴随分区的转移而转移了(这里的12个分区太少了,如果是1200个分区甚至是12000个分区的话,
这个结论就是正确的了,12个分区只为演示用)。
从Dynamo的NRW看CAP法则
在Dynamo系统中,第一次提出来了NRW的方法。
N:复制的次数;
R:读数据的最小节点数;
W:写成功的最小分区数。
这三个数的具体作用是用来灵活地调整Dynamo系统的可用性与一致性。
举个例子来说,如果R=1的话,表示最少只需要去一个节点读数据即可,读到即返回,这时是可用性是很高的,但并不能保证数据的一致性,如果说W同时
为1的
话,那可用性更新是最高的一种情况,但这时完全不能保障数据的一致性,因为在可供复制的N个节点里,只需要写成功一次就返回了,也就意味着,有可能在读的
这一次并没有真正读到需要的数据(一致性相当的不好)。如果W=R=N=3的话,也就是说,每次写的时候,都保证所有要复制的点都写成功,读的时候也是都
读到,这样子读出来的数据一定是正确的,但是其性能大打折扣,也就是说,数据的一致性非常的高,但系统的可用性却非常低了。如果R + W >
N能够保证我们“读我们所写”,Dynamo推荐使用322的组合。
Dynamo系统的数据分区让整个网络的可扩展性其实是一个固定值(你分了多少区,实际上网络里扩展节点的上限就是这个数),通过NRW来达到另外两个方 向上的调整。
Dynamo的一些增加可用性的补救
针对一些经常可能出现的问题,Dynamo还提供了一些解决的方法。
第一个是hinted handoff数据的加入:在一个节点出现临时性故障时,数据会自动进入列表中的下一个节点进行写操作,并标记为handoff数据,在收到通知需要原节点恢复时重新把数据推回去。这能使系统的写入成功大大提升。
第二个是向量时钟来做版本控制:用一个向量(比如说[a,1]表示这个数据在a节点第一次写入)来标记数据的版本,这样在有版本冲突的时候,可以追
溯到出现问题的地方。这可以使数据的最终一致成为可能。(Cassandra未用vector clock,而只用client
timestamps也达到了同样效果。)
第三个是Merkle tree来提速数据变动时的查找:使用Merkle tree为数据建立索引,只要任意数据有变动,都将快速反馈出来。
第四个是Gossip协议:一种通讯协议,目标是让节点与节点之间通信,省略中心节点的存在,使网络达到去中心化。提高系统的可用性。
后记
Dynamo的理论对CAP原则里的可扩展性做到了很方便的实现,通过创造性的NRW来平衡系统的可用性和一致性,增加了系统在实际情况下遇到问题
的可选择方案。可以相像,在NoSQL的道路上,这只是个开端,在分布式计算的道路上,已经是MapReduce之后的再次革命。
关于作者
54chen(陈臻),人人网分布式存储研究人员,业余时间混迹于各技术组织且乐此不疲。目前关注实施PHP培训。对flex等前端技术有一点研究。个人技术站点:http://www.54chen.com/
。可以通过电子邮件 czhttp@gmail.com
联系到他。
参考资料:
分享到:
相关推荐
《永磁无刷直流电机控制系统与软件综合研究——集成电机计算软件、电机控制器及电磁设计软件的创新设计与实践》,永磁无刷直流电机计算与控制软件:高效电机控制器与电磁设计工具,永磁无刷直流电机计算软件,电机控制器,无刷电机设计软件,电机电磁设计软件 ,永磁无刷直流电机计算软件; 电机控制器; 无刷电机设计软件; 电机电磁设计软件,无刷电机设计专家:永磁无刷直流电机计算与控制器设计软件
新能源汽车VCU开发模型及策略详解:从控制策略到软件设计全面解析,新能源汽车VCU开发模型及策略详解:从控制策略到软件设计全面解析,新能源汽车VCU开发模型及控制策略,MBD电控开发 新能源汽车大势所向,紧缺VCU电控开发工程师,特别是涉及新能源三电系统,工资仅仅低于无人驾驶、智能驾驶岗位。 ——含控制策略模型 整车控制策略详细文档 通讯协议文档 接口定义 软件设计说明文档 等(超详细,看懂VCU电控策略开发就通了) 内容如下: 新能源汽车整车控制器VCU学习模型,适用于初学者。 1、模型包含高压上下电,行驶模式管理,能量回馈,充电模式管理,附件管理,远程控制,诊断辅助功能。 2、软件说明书(控制策略说明书) 3、模型有部分中文注释 对想着手或刚开始学习整车控制器自动代码生成或刚接触整车控制器有很大帮助。 ,新能源汽车VCU开发模型; 控制策略; MBD电控开发; 模型学习; 代码生成; 整车控制器; 能量回馈; 诊断辅助功能,新能源汽车电控开发详解:VCU控制策略模型及学习手册
内容概要:本文详细介绍了两种利用 Python 读取 Excel 文件的不同方法,分别是基于 pandas 和 openpyxl。对于想要利用Python 处理 Excel 数据的读者来说,文中不仅提供了简洁明了的具体代码片段以及执行效果展示,还针对每个库的应用特性进行了深度解析。此外,文档提到了一些进阶应用技巧如只读特定的工作薄、过滤某些列等,同时强调了需要注意的地方(像是路径设置、engine 参数调整之类),让读者可以在面对实际项目需求时做出更加明智的选择和技术选型。 适合人群:对 Python 有基本掌握并希望提升数据读取能力的开发人员。 使用场景及目标:适用于任何涉及到批量数据导入或是与 Excel 进行交互的业务流程。无论是做初步的数据探索还是深入挖掘隐藏于电子表格背后的故事,亦或是仅为了简化日常办公自动化任务都可以从中受益。最终目标帮助使用者熟悉两大主流 Excel 解决方案的技术特性和最佳实践。 阅读建议:本文既是一份详尽的学习指南也是一份方便随时查阅的手册。因此初学者应当认真研究所提供的示例,而有一定经验者也可以快速定位到感兴趣的部分查看关键要点。
# 医护人员排班系统 ## 1. 项目介绍 本系统是一个基于SpringBoot框架开发的医护人员排班管理系统,用于医院管理医护人员的排班、调班等工作。系统提供了完整的排班管理功能,包括科室管理、人员管理、排班规则配置、自动排班等功能。 ## 2. 系统功能模块 ### 2.1 基础信息管理 - 科室信息管理:维护医院各科室基本信息 - 医护人员管理:管理医生、护士等医护人员信息 - 排班类型管理:配置不同的排班类型(如:早班、中班、晚班等) ### 2.2 排班管理 - 排班规则配置:设置各科室排班规则 - 自动排班:根据规则自动生成排班计划 - 排班调整:手动调整排班计划 - 排班查询:查看各科室排班情况 ### 2.3 系统管理 - 用户管理:管理系统用户 - 角色权限:配置不同角色的操作权限 - 系统设置:管理系统基础配置 ## 3. 技术架构 ### 3.1 开发环境 - JDK 1.8 - Maven 3.6 - MySQL 5.7 - SpringBoot 2.2.2 ### 3.2 技术栈 - 后端框架:SpringBoot - 持久层:MyBatis-Plus - 数据库:MySQL - 前端框架:Vue.js - 权限管理:Spring Security ## 4. 数据库设计 主要数据表: - 科室信息表(keshixinxi) - 医护人员表(yihurengyuan) - 排班类型表(paibanleixing) - 排班信息表(paibanxinxi) - 用户表(user) ## 5. 部署说明 ### 5.1 环境要求 - JDK 1.8+ - MySQL 5.7+ - Maven 3.6+ ### 5.2 部署步骤 1. 创建数据库并导入SQL脚本 2. 修改application.yml中的数据库配置 3. 执行maven打包命令:mvn clean package 4. 运行jar包:java -jar xxx.jar ## 6. 使用说明 ### 6.1 系统登录 - 管理员账号:admin - 初始密码:admin ### 6.2 基本操作流程 1. 维护基础信息(科室、人员等) 2. 配置排班规则 3. 生成排班计划 4. 查看和调整排班 ## 7. 注意事项 1. 首次使用请及时修改管理员密码 2. 定期备份数据库 3. 建议定期检查和优化排班规则
MATLAB仿真的夫琅禾费衍射强度图:圆孔、圆环、矩形孔定制研究,MATLAB仿真:夫琅禾费衍射强度图的可定制性——以圆孔、圆环及矩形孔为例的研究分析,MATLAB夫琅禾费衍射强度图仿真 圆孔,圆环,矩形孔可定制。 ,MATLAB; 夫琅禾费衍射; 强度图仿真; 圆孔; 圆环; 矩形孔; 可定制。,MATLAB仿真夫琅禾费衍射强度图:定制孔型(圆孔/圆环/矩形)
详细介绍及样例数据:https://blog.csdn.net/samLi0620/article/details/145652300
基于Dugoff轮胎模型与B08_01基础建模的七自由度车辆动力学模型验证:利用MATLAB 2018及以上版本与CarSim 2020.0软件的仿真对比研究,基于Dugoff轮胎模型与B08_01框架的七自由度车辆动力学模型验证——使用MATLAB 2018及以上版本与CarSim 2020.0软件进行仿真对比研究,七自由度车辆动力学模型验证(Dugoff轮胎模型,B08_01基础上建模) 1.软件: MATLAB 2018以上;CarSim 2020.0 2.介绍: 基于Dugoff轮胎模型和车身动力学公式,搭建7DOF车辆动力学Simulink模型,对相关变量(质心侧偏角,横摆角速度,纵、横向速度及加速度)进行CarSim对比验证。 ,核心关键词:七自由度车辆动力学模型验证; Dugoff轮胎模型; B08_01建模基础; MATLAB 2018以上; CarSim 2020.0; Simulink模型; 变量对比验证。,基于Dugoff轮胎模型的七自由度车辆动力学模型验证与CarSim对比
【毕业设计】基于Java+servlet+jsp+css+js+mysql实现“转赚”二手交易平台_pgj
微猫恋爱聊妹术小程序源码介绍: 微猫恋爱聊妹术小程序源码是一款全新升级的聊天工具,它采用全新主题和UI,完美支持分享朋友圈功能。同时,它的独立后台也进行了大规模更新,让操作更加简单。其中,课堂页面、搜索页面和子话术列表页面等,均增加了流量主展示,具有超多的功能。 安装教程: 您可以先加入微猫恋爱聊妹术小程序源码的赞助群,然后在群内找到魔方安装说明。根据源码编号找到相应的安装说明,非常详细,让您轻松完成安装。
电气安装工程安全技术规程_蒋凯,杨华甫,马仲范,王清禄译;孙照森校;鞍钢工程技术编委会编
基于Copula函数的风光空间相关性联合场景生成与K-means聚类削减MATLAB研究,基于Copula函数的风光空间相关性联合场景生成与K-means聚类削减算法研究,基于copula的风光联合场景生成?K-means聚类并削减 MATLAB 由于目前大多数研究的是不计风光出力之间的相关性影响,但是地理位置相近的风电机组和光伏机组具有极大的相关性。 因此,采用 Copula 函数作为风电、光伏联合概率分布,生成风、光考虑空间相关性联合出力场景,在此基础上,基于Kmeans算法,分别对风光场景进行聚类,从而实现大规模场景的削减,削减到5个场景,最后得出每个场景的概率与每个对应场景相乘求和得到不确定性出力 ,基于Copula的风光联合场景生成; K-means聚类削减; 空间相关性; 概率分布; 场景削减,基于Copula与K-means的风光联合场景生成与削减研究
模块化多电平变流器MMC的VSG控制技术研究:基于MATLAB-Simulink的仿真分析与定制实现——支持三相与任意电平数,构网型模块化多电平变流器MMC的VSG控制策略与仿真模型:三相负荷变动下的虚拟同步发电机控制研究,构网型 模块化多电平变流器 MMC 的VSG控制 同步发电机控制 MATLAB–Simulink仿真模型,可按需求定制 10电平.14电平,任意电平可做。 三相MMC,采用VSG控制。 设置负荷变动,调整有功无功,保持电网电压和频率 ,构网型模块化多电平变流器; MMC的VSG控制; 虚拟同步发电机控制; MATLAB–Simulink仿真模型; 任意电平可做; 三相MMC; 负荷变动; 有功无功调整; 电网电压和频率保持。,基于VSG控制的模块化多电平变流器(MMC)的构网型仿真模型
暗通道算法DCP-Python实现
南师大实验室安全准入知识供学习
纯openMV寻迹小车.zip
【毕业设计】基于Java mvc架构开发的完整购物网站
以下是针对初学者的 **51单片机入门教程**,内容涵盖基础概念、开发环境搭建、编程实践及常见应用示例,帮助你快速上手。
springboot医院信管系统--
springboot私人健身与教练预约管理系统--
yolov8-0的资源