`
langzhiwang888
  • 浏览: 184956 次
  • 性别: Icon_minigender_1
  • 来自: 青岛
社区版块
存档分类
最新评论

apache中并发控制参数prefork理解和调优

 
阅读更多

以prefork模式为例来说明参数的设置,其缺省设置一般如下:

<IfModule mpm_prefork_module>

         ServerLimit                      2000
         StartServers               5
         MinSpareServers            5
         MaxSpareServers           10
         MaxClients               150
         MaxRequestsPerChild        0
</IfModule>

#有这个参数就不必像apache1一样修改源码才能修改256客户数的限制,听讲要放到最前面才会生效,2000是这个参数的最大值
ServerLimit 2000


#指定服务器启动时建立的子进程数量,prefork默认为5。
StartServers 5

#指定空闲子进程的最小数量,默认为5。如果当前空闲子进程数少于MinSpareServers ,那么Apache将以最大每秒一个的速度产生新的子进程。此参数不要设的太大。
MinSpareServers 5

#设置空闲子进程的最大数量,默认为10。如果当前有超过MaxSpareServers数量的空闲子进程,那么父进程将杀死多余的子进程。此参数 不要设的太大。如果你将该指令的值设置为比MinSpareServers小,Apache将会自动将其修改成"MinSpareServers+1"。
MaxSpareServers 10

#限定同一时间客户端最大接入请求的数量(单个进程并发线程数),默认为256。任何超过MaxClients限制的请求都将进入等候队列,一旦一个链接被释放,队列中的请求将得到服务。要增大这个值,你必须同时增大ServerLimit 。
MaxClients 150

#每个子进程在其生存期内允许伺服的最大请求数量,默认为10000.到达MaxRequestsPerChild的限制后,子进程将会结束。如果MaxRequestsPerChild为"0",子进程将永远不会结束。
MaxRequestsPerChild 0

prefork 控制进程在最初建立“StartServers”个子进程后,为了满足MinSpareServers设置的需要创建一个进程,等待一秒钟,继续创建两个,再等待一秒钟,继续创建四个……如此按指数级增加创建的进程数,最多达到每秒32个,直到满足MinSpareServers设置的值为止。这种模式可以不必在请求到来时再产生新的进程,从而减小了系统开销以增加性能。


MaxSpareServers设置了最大的空闲进程数,如果空闲进程数大于这个值,Apache会自动kill掉一些多余进程。这个值不要设得过大,但如果设的值比MinSpareServers小,Apache会自动把其调整为 MinSpareServers+1。如果站点负载较大,可考虑同时加大MinSpareServers和MaxSpareServers。


MaxRequestsPerChild设置的是每个子进程可处理的请求数。每个子进程在处理了“MaxRequestsPerChild”个请求后将自动销毁。0意味着无限,即子进程永不销毁。虽然缺省设为0可以使每个子进程处理更多的请求,但如果设成非零值也有两点重要的好处:

1、可防止意外的内存泄漏。

2、在服务器负载下降的时侯会自动减少子进程数。

因此,可根据服务器的负载来调整这个值。


MaxClients是这些指令中最为重要的一个,设定的是 Apache可以同时处理的请求,是对Apache性能影响最大的参数。其缺省值150是远远不够的,如果请求总数已达到这个值(可通过ps -ef|grep httpd|wc -l来确认),那么后面的请求就要排队,直到某个已处理请求完毕。这就是系统资源还剩下很多而HTTP访问却很慢的主要原因。虽然理论上这个值越大,可以处理的请求就越多,但Apache默认的限制不能大于256。ServerLimit指令无须重编译Apache就可以加大MaxClients。


注意,虽然通过设置ServerLimit,我们可以把MaxClients加得很大,但是往往会适得其反,系统耗光所有内存。以一台服务器为例:内存2G,每个apache进程消耗大约0.5%(可通过ps aux来确认)的内存,也就是10M,这样,理论上这台服务器最多跑200个apache进程就会耗光系统所有内存,所以,设置MaxClients要慎重。

模块安装应该取最小集合:http://hi.baidu.com/thinkinginlamp/blog/item/d677cffc1e083d83b901a016.html

 


再来看看work模式,缺省参数一般如下:

<IfModule mpm_worker_module>
         StartServers               2
         MaxClients               150
         MinSpareThreads           25
         MaxSpareThreads           75
         ThreadsPerChild           25
         MaxRequestsPerChild        0
</IfModule>

Worker 由主控制进程生成“StartServers”个子进程,每个子进程中包含固定的ThreadsPerChild线程数,各个线程独立地处理请求。同样,为了不在请求到来时再生成线程,

MinSpareThreads和MaxSpareThreads设置了最少和最多的空闲线程数;而MaxClients 设置了同时连入的clients最大总数。如果现有子进程中的线程总数不能满足负载,控制进程将派生新的子进程。

MinSpareThreads和 MaxSpareThreads的最大缺省值分别是75和250。这两个参数对Apache的性能影响并不大,可以按照实际情况相应调节。

ThreadsPerChild是worker MPM中与性能相关最密切的指令。

ThreadsPerChild的最大缺省值是64,如果负载较大,64也是不够的。这时要显式使用 ThreadLimit指令,它的最大缺省值是20000。

Worker模式下所能同时处理的请求总数是由子进程总数乘以ThreadsPerChild 值决定的,应该大于等于MaxClients。如果负载很大,现有的子进程数不能满足时,控制进程会派生新的子进程。默认最大的子进程总数是16,加大时也需要显式声明ServerLimit(最大值是20000)。需要注意的是,如果显式声明了ServerLimit,那么它乘以 ThreadsPerChild的值必须大于等于MaxClients,而且MaxClients必须是ThreadsPerChild的整数倍,否则 Apache将会自动调节到一个相应值。

 

 

一个apache有linux下的并发不是很高的,大约到3K的样子,普通的服务器都会不同程度的出现问题.apache有关并发控制主要是 prefork和worker二个其中一个来控制.我们可以使用httpd -l来确定当前使用的MPM是prefork.c,还是Worker.c.下面是apache中有关prefork的配置.下面是我优化过的参数. 
<IfModule prefork.c> 
#有这个参数就不必像apache1一样修改源码才能修改256客户数的限制,听讲要放到最前面才会生效,2000是这个参数的最大值 
ServerLimit 2000 
#指定服务器启动时建立的子进程数量,prefork默认为5。 
StartServers 25 
#指定空闲子进程的最小数量,默认为5。如果当前空闲子进程数少于MinSpareServers ,那么Apache将以最大每秒一个的速度产生新的子进程。此参数不要设的太大。 
MinSpareServers 25 
#设置空闲子进程的最大数量,默认为10。如果当前有超过MaxSpareServers数量的空闲子进程,那么父进程将杀死多余的子进程。此参数 不要设的太大。如果你将该指令的值设置为比MinSpareServers小,Apache将会自动将其修改成"MinSpareServers+1"。 
MaxSpareServers 50 
#限定同一时间客户端最大接入请求的数量(单个进程并发线程数),默认为256。任何超过MaxClients限制的请求都将进入等候队列,一旦一个链接被释放,队列中的请求将得到服务。要增大这个值,你必须同时增大ServerLimit 。 
MaxClients 2000 
#每个子进程在其生存期内允许伺服的最大请求数量,默认为10000.到达MaxRequestsPerChild的限制后,子进程将会结束。如果MaxRequestsPerChild为"0",子进程将永远不会结束。 
MaxRequestsPerChild 10000 
</IfModule> 
将MaxRequestsPerChild设置成非零值有两个好处: 
1.可以防止(偶然的)内存泄漏无限进行,从而耗尽内存。 
2.给进程一个有限寿命,从而有助于当服务器负载减轻的时候减少活动进程的数量。 
工作方式: 
一个单独的控制进程(父进程)负责产生子进程,这些子进程用于监听请求并作出应答。Apache总是试图保持一些备用的 (spare)或者是空闲的子进程用于迎接即将到来的请求。这样客户端就不需要在得到服务前等候子进程的产生。在Unix系统中,父进程通常以root身 份运行以便邦定80端口,而 Apache产生的子进程通常以一个低特权的用户运行。User和Group指令用于设置子进程的低特权用户。运行子进程的用户必须要对它所服务的内容有 读取的权限,但是对服务内容之外的其他资源必须拥有尽可能少的权限。 
我们调优常常要查看httpd进程数(即prefork模式下Apache能够处理的并发请求数): 
#ps -ef | grep httpd | wc -l 
出现的结果,就是当前Apache能够处理的多少个并发请求,这个值Apache根据负载情况自动调. 
查看Apache的并发请求数及其TCP连接状态: 
#netstat -n | awk ‘/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}’ 
上面这句来自己我一个新浪的朋友张宴. 
返回结果示例: 
LAST_ACK 5 
SYN_RECV 30 
ESTABLISHED 1597 
FIN_WAIT1 51 
FIN_WAIT2 504 
TIME_WAIT 1057 
其中的SYN_RECV表示正在等待处理的请求数;ESTABLISHED表示正常数据传输状态;TIME_WAIT表示处理完毕,等待超时结束的请求数。 
状态:描述 
CLOSED:无连接是活动的或正在进行 
LISTEN:服务器在等待进入呼叫 
SYN_RECV:一个连接请求已经到达,等待确认 
SYN_SENT:应用已经开始,打开一个连接 
ESTABLISHED:正常数据传输状态 
FIN_WAIT1:应用说它已经完成 
FIN_WAIT2:另一边已同意释放 
ITMED_WAIT:等待所有分组死掉 
CLOSING:两边同时尝试关闭 
TIME_WAIT:另一边已初始化一个释放 
LAST_ACK:等待所有分组死掉 
可以使用Linux下的webbench来作压力测试.

分享到:
评论

相关推荐

    AI从头到脚详解如何创建部署Azure Web App的OpenAI项目源码

    【AI】从头到脚详解如何创建部署Azure Web App的OpenAI项目源码

    人脸识别_卷积神经网络_CNN_ORL数据库_身份验证_1741779511.zip

    人脸识别项目实战

    人工智能-人脸识别代码

    人工智能-人脸识别代码,采用cnn的架构识别代码

    汽车配件制造业企业信息化整体解决方案.pptx

    汽车配件制造业企业信息化整体解决方案

    短期风速预测模型,IDBO-BiTCN-BiGRU-Multihead-Attention IDBO是,网上复现 评价指标:R方、MAE、MAPE、RMSE 附带测试数据集运行(风速数据) 提示:在

    短期风速预测模型,IDBO-BiTCN-BiGRU-Multihead-Attention IDBO是,网上复现 评价指标:R方、MAE、MAPE、RMSE 附带测试数据集运行(风速数据) 提示:在MATLAB2024a上测试正常 ,短期风速预测模型; IDBO-BiTCN-BiGRU-Multihead-Attention; 评价指标: R方、MAE、MAPE、RMSE; 复现; 测试数据集; MATLAB 2024a,短期风速预测模型:IDBO-BiTCN-BiGRU-Attention集成模型

    手势识别_数据融合_运动融合帧_Pytorch实现_1741857761.zip

    手势识别项目实战

    智慧园区IBMS可视化管理系统建设方案PPT(61页).pptx

    在智慧园区建设的浪潮中,一个集高效、安全、便捷于一体的综合解决方案正逐步成为现代园区管理的标配。这一方案旨在解决传统园区面临的智能化水平低、信息孤岛、管理手段落后等痛点,通过信息化平台与智能硬件的深度融合,为园区带来前所未有的变革。 首先,智慧园区综合解决方案以提升园区整体智能化水平为核心,打破了信息孤岛现象。通过构建统一的智能运营中心(IOC),采用1+N模式,即一个智能运营中心集成多个应用系统,实现了园区内各系统的互联互通与数据共享。IOC运营中心如同园区的“智慧大脑”,利用大数据可视化技术,将园区安防、机电设备运行、车辆通行、人员流动、能源能耗等关键信息实时呈现在拼接巨屏上,管理者可直观掌握园区运行状态,实现科学决策。这种“万物互联”的能力不仅消除了系统间的壁垒,还大幅提升了管理效率,让园区管理更加精细化、智能化。 更令人兴奋的是,该方案融入了诸多前沿科技,让智慧园区充满了未来感。例如,利用AI视频分析技术,智慧园区实现了对人脸、车辆、行为的智能识别与追踪,不仅极大提升了安防水平,还能为园区提供精准的人流分析、车辆管理等增值服务。同时,无人机巡查、巡逻机器人等智能设备的加入,让园区安全无死角,管理更轻松。特别是巡逻机器人,不仅能进行360度地面全天候巡检,还能自主绕障、充电,甚至具备火灾预警、空气质量检测等环境感知能力,成为了园区管理的得力助手。此外,通过构建高精度数字孪生系统,将园区现实场景与数字世界完美融合,管理者可借助VR/AR技术进行远程巡检、设备维护等操作,仿佛置身于一个虚拟与现实交织的智慧世界。 最值得关注的是,智慧园区综合解决方案还带来了显著的经济与社会效益。通过优化园区管理流程,实现降本增效。例如,智能库存管理、及时响应采购需求等举措,大幅减少了库存积压与浪费;而设备自动化与远程监控则降低了维修与人力成本。同时,借助大数据分析技术,园区可精准把握产业趋势,优化招商策略,提高入驻企业满意度与营收水平。此外,智慧园区的低碳节能设计,通过能源分析与精细化管理,实现了能耗的显著降低,为园区可持续发展奠定了坚实基础。总之,这一综合解决方案不仅让园区管理变得更加智慧、高效,更为入驻企业与员工带来了更加舒适、便捷的工作与生活环境,是未来园区建设的必然趋势。

    相亲交友系统源码 V10.5支持婚恋相亲M红娘系统.zip

    相亲交友系统源码 V10.5支持婚恋相亲、媒婆返利、红娘系统、商城系统等等 这款交友系统功能太多了,适合婚恋相亲,还有媒婆婚庆等等支持 PC和 H5还有小程序,可封装红年、APP,里面带安装教程

    单片机也能玩双核之你想不到c技巧系列-嵌入式实战(资料+视频教程)

    本资源《单片机也能玩双核之你想不到的C技巧系列——嵌入式实战》涵盖 双核单片机开发、C语言高级技巧、嵌入式系统优化 等核心内容,结合 实战案例与视频教程,帮助开发者深入理解并掌握高效编程技巧。 适用人群: 适合 嵌入式开发工程师、单片机开发者、电子信息相关专业学生,以及希望提升 C语言编程能力 和 嵌入式项目经验 的技术人员。 能学到什么: 双核单片机开发思路,提高并行处理能力。 C语言高级技巧,提升代码优化与执行效率。 嵌入式系统调试方法,掌握实际项目中的调试策略。 实战案例解析,学习如何在实际工程中应用双核技术。 阅读建议: 建议 先学习基础知识,再结合 示例代码与视频教程 进行实操,重点关注 代码优化、调试技巧与双核应用模式,通过实战演练提高嵌入式开发能力。

    计算机视觉_OpenCV_人脸识别_成本节约检测方案_1741779495.zip

    人脸识别项目源码实战

    `机器学习_深度学习_Keras_教程用途`.zip

    人脸识别项目源码实战

    地铁网络_Dijkstra_最短路径_查询工具_1741862725.zip

    c语言学习

    红外光伏缺陷目标检测模型,YOLOv8模型 基于红外光伏缺陷目标检测数据集训练,做了必要的数据增强处理,以达到缺陷类别间的平衡 可检测大面积热斑,单一热斑,二极管短路和异常低温四类缺陷 测试集指标如

    红外光伏缺陷目标检测模型,YOLOv8模型 基于红外光伏缺陷目标检测数据集训练,做了必要的数据增强处理,以达到缺陷类别间的平衡 可检测大面积热斑,单一热斑,二极管短路和异常低温四类缺陷 测试集指标如图所示 ,核心关键词:红外光伏缺陷目标检测模型; YOLOv8模型; 数据增强处理; 缺陷类别平衡; 大面积热斑; 单一热斑; 二极管短路; 异常低温。,基于YOLOv8的红外光伏缺陷检测模型

    基于PLC的自动浇花控制系统 西门子1200PLC博途仿真,提供HMI画面,接线图,IO分配表,演示视频,简单讲解视频 博图15.1及以上版本均可使用 ,核心关键词: PLC自动浇花控制系统; 西

    基于PLC的自动浇花控制系统 西门子1200PLC博途仿真,提供HMI画面,接线图,IO分配表,演示视频,简单讲解视频 博图15.1及以上版本均可使用 ,核心关键词: PLC自动浇花控制系统; 西门子1200PLC博途仿真; HMI画面; 接线图; IO分配表; 演示视频; 简单讲解视频; 博图15.1及以上版本。,基于PLC的自动浇花系统:西门子1200PLC博途仿真实践教程

    智慧园区标准化综合解决方案PPT(60页).pptx

    在智慧园区建设的浪潮中,一个集高效、安全、便捷于一体的综合解决方案正逐步成为现代园区管理的标配。这一方案旨在解决传统园区面临的智能化水平低、信息孤岛、管理手段落后等痛点,通过信息化平台与智能硬件的深度融合,为园区带来前所未有的变革。 首先,智慧园区综合解决方案以提升园区整体智能化水平为核心,打破了信息孤岛现象。通过构建统一的智能运营中心(IOC),采用1+N模式,即一个智能运营中心集成多个应用系统,实现了园区内各系统的互联互通与数据共享。IOC运营中心如同园区的“智慧大脑”,利用大数据可视化技术,将园区安防、机电设备运行、车辆通行、人员流动、能源能耗等关键信息实时呈现在拼接巨屏上,管理者可直观掌握园区运行状态,实现科学决策。这种“万物互联”的能力不仅消除了系统间的壁垒,还大幅提升了管理效率,让园区管理更加精细化、智能化。 更令人兴奋的是,该方案融入了诸多前沿科技,让智慧园区充满了未来感。例如,利用AI视频分析技术,智慧园区实现了对人脸、车辆、行为的智能识别与追踪,不仅极大提升了安防水平,还能为园区提供精准的人流分析、车辆管理等增值服务。同时,无人机巡查、巡逻机器人等智能设备的加入,让园区安全无死角,管理更轻松。特别是巡逻机器人,不仅能进行360度地面全天候巡检,还能自主绕障、充电,甚至具备火灾预警、空气质量检测等环境感知能力,成为了园区管理的得力助手。此外,通过构建高精度数字孪生系统,将园区现实场景与数字世界完美融合,管理者可借助VR/AR技术进行远程巡检、设备维护等操作,仿佛置身于一个虚拟与现实交织的智慧世界。 最值得关注的是,智慧园区综合解决方案还带来了显著的经济与社会效益。通过优化园区管理流程,实现降本增效。例如,智能库存管理、及时响应采购需求等举措,大幅减少了库存积压与浪费;而设备自动化与远程监控则降低了维修与人力成本。同时,借助大数据分析技术,园区可精准把握产业趋势,优化招商策略,提高入驻企业满意度与营收水平。此外,智慧园区的低碳节能设计,通过能源分析与精细化管理,实现了能耗的显著降低,为园区可持续发展奠定了坚实基础。总之,这一综合解决方案不仅让园区管理变得更加智慧、高效,更为入驻企业与员工带来了更加舒适、便捷的工作与生活环境,是未来园区建设的必然趋势。

    大型集团用户画像系统化标准化数字化用户主数据管理项目规划方案.pptx

    大型集团用户画像系统化标准化数字化用户主数据管理项目规划方案

    基于STM32的水质 浊度检测仪设计与实现(详细设计说明书+ 10008-基于STM32的水质 浊度检测仪设计与实现(详细设计说明书+原理图PCB工程+源码工程+实物照片) 本次设计是设计一款水质检

    基于STM32的水质 浊度检测仪设计与实现(详细设计说明书+ 10008-基于STM32的水质 浊度检测仪设计与实现(详细设计说明书+原理图PCB工程+源码工程+实物照片) 本次设计是设计一款水质检测设备,实现温度检查、水质检测的功能,将检测到的数据显示到显示器中,并实时记录系统的参数 本次系统需要对温度检测,使用的传感器为DS18B20,通过单总线的方式来完成系统温度检测 使用水质检测模块检查水的质量 通过传感器检测到的数据计算后的值实时刷新到显示器中,主要的功能包括以下几点: ①可以对温度实时检测; ②可以对水质实际值实时检测; ③水质浑浊预警 主要特点: 1.以STM32单片机为核心,配合水质模块; 2.主要完成系统的 功能控制、状态显示、信息检测以及报警硬件组建所单片机和传感器等元器件的选择; 3.完成系统控制的软件设计编程; 4.实现对水质检测、温度检查、预警的功能 内容包含: 1、原理图工程 2、PCB工程 3、源码工程 4、实物照片 5、详细介绍说明书-22531字 6、实物照片 7、浊度传感器资料

    人脸识别_seetaface6_SDK_多功能应用开发工具包_1741771332.zip

    人脸识别项目实战

    华中科技大学计算机科学研究生复试上机测试题.zip

    华中科技大学计算机科学研究生复试上机测试题.zip

    YOLOv8部署到web上(Django+html)

    YOLOv8部署到web上(Django+html)

Global site tag (gtag.js) - Google Analytics