c++ 模板分为2类:
1. 函数模板
格式:template <typename 形参名,typename 形参名> 反回类型函数名(参数列表){函数体}
比如:
template <typename T> void swap(T& a, T& b){}
调用时:
int a,b;
swap(a,b);
double d1,d2;
swap(d1,d2);
但是下面写法是错误的:
swap(int,int):不能在函数调用的参数中指定模板形参的类型,对函数模板的调用应使用实参推演来进行
2.类模板
格式:template<typename 形参名,typename 形参名…> class 类名{}
比如:
template<typename T>
class A
{
public:
T a;
T b;
T hy(T c, T &d);
};
类模板对象的创建:比有一个模板类A,则使用类模板创建对象的方法为A<int> m;在类A 后面跟上一个<>尖括号
并在里面填上相应的类型,这样的话类A 中凡是用到模板形参的地方都会被int 所代替。当类模板有两个模板形参
时创建对象的方法为A<int, double> m;类型之间用逗号隔开。
对于类模板,模板形参的类型必须在类名后的尖括号中明确指定。比如A<2> m;用这种方法把模板形参设置为int
是错误的,类模板形参不存在实参推演的问题。也就是说不能把整型值2 推演为int 型传递给模板形参。要把类模板
形参调置为int 型必须这样指定A<int> m。
在类模板外部定义成员函数的方法为:template<模板形参列表> 函数反回类型类名<模板形参名>::函数名(参数列表){函数体},比如有两个模板形参T1,T2的类A中含有一个void h()函数,则定义该函数的语法为:template<class
T1,class T2> void A<T1,T2>::h(){}。注意当在类外面定义类的成员时template后面的模板形参应与要定义的类的模
板形参一致。
模板的形参
有三种类型的模板形参:类型形参,非类型形参和模板形参。
1、类型形参
1.1 类型模板形参:类型形参由关见字class或typename后接说明符构成,如template<class T> void h(T a){};其中T就是一个类型形参,类型形参的名字由用户自已确定。模板形参表示的是一个未知的类型。模板类型形参可作为类型说
明符用在模板中的任何地方,与内置类型说明符或类类型说明符的使用方式完全相同,即可以用于指定反回类型,
变量声明等。
1.2 不能为同一个模板类型形参指定两种不同的类型,比如template<class T>void h(T a, T b){},语句调用h(2, 3.2)将出错,因为该语句给同一模板形参T指定了两种类型,第一个实参2把模板形参T指定为int,而第二个实参3.2把模板形参指定为double,两种类型的形参不一致,会出错。
2、非类型形参
2.1 非类型模板形参:模板的非类型形参也就是内置类型形参,如template<class T, int a> class B{};其中int a就是非类型
的模板形参。
2.2 非类型形参在模板定义的内部是常量值,也就是说非类型形参在模板的内部是常量。
2.3 非模板类型的形参只能是整型,指针和引用,像double,String, String **这样的类型是不允许的。但是double &,double*,对象的引用或指针是正确的。
2.4 调用非类型模板形参的实参必须是一个常量表达式,即他必须能在编译时计算出结果。
2.5 注意: 任何局部对象,局部变量,局部对象的地址,局部变量的地址都不是一个常量表达式,都不能用作非类型模
板形参的实参。全局指针类型,全局变量,全局对象也不是一个常量表达式,不能用作非类型模板形参的实参。
2.6 全局变量的地址或引用,全局对象的地址或引用const类型变量是常量表达式,可以用作非类型模板形参的实参。
类模板非类型形参示例
//模板的声明或定义只能在全局,命名空间或类范围内进行。即不能在局部范围,函数内进行,比如不能在main函数中声明或定义一个模板。
//类模板的定义
template<class T>class A{public:T g(T a, T b); A();}; //定义带有一个类模板类型形参T的类A
template<class T1,class T2>class B{public:void g();}; //定义带有两个类模板类型形参T1,T2的类B
//定义类模板的默认类型形参,默认类型形参不适合于函数模板。
template<class T1,class T2=int> class D{public: void g();}; //定义带默认类型形参的类模板。这里把T2默认设置为int型。
//template<class T1=int, class T2>class E{}; //错误,为T1设了默认类型形参则T1后面的所有形参都必须设置认默值。
//以下为非类型形参的定义
//非类型形参只能是整型,指针和引用,像double,String, String **这样的类型是不允许的。但是double &,double *对象的引用或指
针是正确的。
template<class T1,int a> class Ci{public:void g();}; //定义模板的非类型形参,形参为整型
template<class T1,int &a>class Cip{public:void g();};
template<class T1,A<int>* m> class Cc{public:void g();}; //定义模板的模板类型形参,形参为int型的类A的对象的指针。
template<class T1,double *a>class Cd{public:void g();}; //定义模板的非类型形参,形参为double类型的引用。
class E{}; template<class T1,E &m> class Ce{}; //非类型模板形参为对象的引用。
//以下非类型形参的声明是错误的。
//template<class T1,A m>class Cc{}; //错误,对象不能做为非类型形参,非类型模板形参的类型只能是对象的引用或指针。
//template<class T1,double a>class Cc{}; //错误,非类型模板的形参不能是double类型,可以是double的引用。
//template<class T1,A<int> m>class Cc{}; //错误,非类型模板的形参不能是对象,必须是对象的引用或指针。这条规则对于模板型参
也不例外。
//在类模板外部定义各种类成员的方法,
//typeid(变量名).name()的作用是提取变量名的类型,如int a,则cout<<typeid(a).name()将输出int
template<class T> A<T>::A(){cout<<"class A goucao"<<typeid(T).name()<<endl;} //在类模板外部定义类的构造函数的方法
template<class T> T A<T>::g(T a,T b){cout<<"class A g(T a,T b)"<<endl;} //在类模板外部定义类模板的成员
template<class T1,class T2> void B<T1,T2>::g(){cout<<"class g f()"<<typeid(T1).name()<<typeid(T2).name()<<endl;}
//在类外面定义类的成员时template后面的模板形参应与要定义的类的模板形参一致
template<class T1,int a> void Ci<T1,a>::g(){cout<<"class Ci g()"<<typeid(T1).name()<<endl;}
template<class T1,int &a> void Cip<T1,a>::g(){cout<<"class Cip g()"<<typeid(T1).name()<<endl;}
//在类外部定义类的成员时,template后的模板形参应与要定义的类的模板形参一致
template<class T1,A<int> *m> void Cc<T1,m>::g(){cout<<"class Cc g()"<<typeid(T1).name()<<endl;}
template<class T1,double* a> void Cd<T1,a>::g(){cout<<"class Cd g()"<<typeid(T1).name()<<endl;}
//带有默认类型形参的模板类,在类的外部定义成员的方法。
//在类外部定义类的成员时,template的形参表中默认值应省略
template<class T1,class T2> void D<T1,T2>::g(){cout<<"class D g()"<<endl;}
//template<class T1,class T2=int> void D<T1,T2>::g(){cout<<"class D k()"<<endl;} //错误,在类模板外部定义带有默认类型的形
参时,在template的形参表中默认值应省略。
//定义一些全局变量。
int e=2; double ed=2.2; double *pe=&ed;
A<int> mw; A<int> *pec=&mw; E me;
//main函数开始
int main()
{ // template<class T>void h(){} //错误,模板的声明或定义只能在全局,命名空间或类范围内进行。即不能在局部范围,函数内进行。
//A<2> m; //错误,对类模板不存在实参推演问题,类模板必须在尖括号中明确指出其类型。
//类模板调用实例
A<int> ma; //输出"class A goucao int"创建int型的类模板A的对象ma。
B<int,int> mb; mb.g(); //输出"class B g() int int"创建类模板B的对象mb,并把类型形参T1和T2设计为int
//非类型形参的调用
//调用非类型模板形参的实参必须是一个常量表达式,即他必须能在编译时计算出结果。任何局部对象,局部变量,局部对象的地址,局部
变量的地址都不是一个常量表达式,都不能用作非类型模板形参的实参。全局指针类型,全局变量,全局对象也不是一个常量表达式,不能
用作非类型模板形参的实参。
//全局变量的地址或引用,全局对象的地址或引用const类型变量是常量表达式,可以用作非类型模板形参的实参。
//调用整型int型非类型形参的方法为名为Ci,声明形式为template<class T1,int a> class Ci
Ci<int,GHIJKLMJKLNOPQMII//正确,数值R是一个int型常量,输出"class Ci g() int"
const int a2=SMITLUint,a2> mci1; mci1.g(); //正确,因为a2在这里是const型的常量。输出"class Ci g() int"
//Ci<int,a> mci; //错误,int型变量a是局部变量,不是一个常量表达式。
//Ci<int,e> mci; //错误,全局int型变量e也不是一个常量表达式。
//调用int&型非类型形参的方法类名为Cip,声明形式为template<class T1,int &a>class Cip
Cip<int,e> mcip; //正确,对全局变量的引用或地址是常量表达式。
//Cip<int,a> mcip1; //错误,局部变量的引用或地址不是常量表达式。
//调用double*类型的非类形形参类名为Cd,声明形式为template<class T1,double *a>class Cd
Cd<int,&ed> mcd; //正确,全局变量的引用或地址是常量表达式。
//Cd<int,pe> mcd1; //错误,全局变量指针不是常量表达式。
//double dd=aNGMIITbULcdefbbHIJKbgMIhh错误,局部变量的地址不是常量表达式,不能用作非类型形参的实参
//Cd<int,&e> mcd; //错误,非类型形参虽允许一些转换,但这个转换不能实现。
//调用模板类型形参对象A<int> *的方法类名为Cc,声名形式为template<class T1,A<int>* m> class Cc
Cc<int,&mw> mcc; mcc.g(); //正确,全局对象的地址或者引用是常量表达式
//Cc<int,&ma> mcc; //错误,局部变量的地址或引用不是常量表达式。
//Cc<int,pec> mcc2; //错误,全局对象的指针不是常量表达式。
//调用非类型形参E&对象的引用的方法类名为Ce。声明形式为template<class T1,E &m> class Ce
E me1; //Ce<int,me1> mce1; //错误,局部对象不是常量表达式
Ce<int,me> mce; //正确,全局对象的指针或引用是常量表达式。
//非类型形参的转换示例,类名为Ci
//非类型形参允许从数组到指针,从函数到指针的转换,const修饰符的转换,提升转换,整值转换,常规转换。
const short s=M Ci<int,s> mci
MI//正确,虽然short型和int不完全匹配,但这里可以将short型转换为int型
//函数模板实参推演示例。
// h(int); //错误,对于函数模板而言不存在h(int,int)这样的调用,不能在函数调用的参数中指定模板形参的类型,对函数模板的调用
应使用实参推演来进行,即只能进行h(2,©Q这样的调用,或者int a, b; h(a,b)。
//h函数形式为:template<class T>void h(T a)
h(2);//输出"hansu h() int"使用函数模板推演,在这里数值2为int型,所以把类型形参T推演为int型。
h(2.¬QMI//输出"hansu h() double",因为2.®为double型,所以将函数模板的类型形参推演为double型
//k函数形式为:template<class T>void k(T a,T b)
k(2,°QMI//输出"hansu k() int"
//k(2,±N¬QMIhh错误,模板形参T的类型不明确,因为k()函数第一个参数类型为int,第二个为double型,两个形参类型不一致。
//f函数的形式为:template<class T1,class T2> void f(T1 a, T2 b)
f(¶e
N¬QMI//输出"hansu f() int,double",这里不存在模板形参推演错误的问题,因为模板函数有两个类型形参T1和T2。在这里将T1推
演为int,将T2推演为double。
int a=¼Mdouble b=½M
f(a,b); //输出同上,这里用变量名实现推板实参的推演。
//模板函数推演允许的转换示例,g函数的形式为template<class T> void g(const T* a)
int a1ÁÂÃÄÅgeÂM g(a1); //输出"hansu g() int",数组的地址和形参const T*不完全匹配,所以将a1的地址T &转换为const T*,而a1
是int型的,所以最后T推演为int。
g(&b); //输出"hansu g() double",这里和上面的一样,只是把类型T转换为double型。
h(&b); }//输出"hansu h() double *"这里把模参类型T推演为double *类型。
分享到:
相关推荐
C++模板是C++语言中的一个强大特性,它允许程序员创建泛型代码,即能够处理多种数据类型的代码。模板在C++中分为两种主要类型:函数模板和类模板。函数模板用于定义可以接受不同类型参数的函数,而类模板用于创建...
C++模板和STL库是C++编程语言中的两个核心特性,它们极大地提高了代码的复用性和效率。本文将深入探讨这两个主题,并提供丰富的实践应用示例。 首先,我们来理解C++模板。模板是C++的一个强大工具,它允许程序员...
C++模板是C++语言中的一个强大特性,它允许我们编写通用代码,实现代码复用,提高效率。在深入实践C++模板编程的过程中,我们不仅可以理解模板的基本概念,还可以掌握其高级特性和应用技巧。 首先,我们要理解模板...
《C++模板中文版》是一本深入探讨C++模板编程技术的专业书籍,旨在帮助读者全面理解和掌握这一核心的C++特性。C++模板是C++语言中的一个强大工具,它允许程序员创建泛型代码,实现代码重用和类型安全。在阅读这本书...
### C++模板元编程 #### 一、C++模板元编程概述 在现代软件开发领域,C++模板元编程(Template Metaprogramming)是一种利用C++编译器的类型系统来实现计算逻辑的技术。它允许程序员在编译时执行复杂的算法和数据...
《C++模板元编程技术与应用》是一本深入探讨C++模板元编程的书籍,旨在让更多的C++程序员了解并掌握这一技术,从而在编程过程中提高效率和代码质量。模板元编程是C++中一种强大的静态编译时编程技术,它允许程序员在...
C++模板元编程是一种在编译时执行计算和创建代码的技术,它利用了C++模板系统的能力,将编程任务从运行时转移到了编译时。模板元编程允许开发者编写更高效、更灵活的代码,特别是在处理类型系统和泛型算法时。在本...
C++模板是C++编程语言中的一个重要特性,它允许程序员创建泛型代码,实现代码复用,提升效率并保持灵活性。在"两本很好的讲解c++ template的书"中,我们可以期待深入理解模板的各个方面,包括基本概念、特性和最佳...
C++模板类是C++语言中的一个重要特性,它允许我们编写通用代码,这些代码可以用于处理不同类型的数据。模板类的出现使得程序员可以创建泛型(generic)容器、算法和其他工具,无需为每种数据类型单独编写代码。下面...
C++ 模板讲解习题及答案 C++ 模板是 C++ 编程语言中的一种非常重要的概念,它可以实现代码的复用和泛型编程。下面是 C++ 模板的主要知识点和考点: 1. 模板的概念 模板是指可以根据需要实例化出多种类型的函数或类...
C++模板详解 C++模板是C++编程语言中的一种重要机制,它允许开发者编写通用的函数和类,以适应不同的数据类型。模板的出现解决了函数重载的问题,使得代码更加简洁和灵活。本文将详细讲解C++模板的概念、声明、使用...
C++模板库是C++编程语言中的一个强大工具,它为程序员提供了高度抽象和泛化的代码复用机制。模板库主要包括三大部分:模板、标准模板库(STL)和元编程。在这里,我们将深入探讨C++模板库的基础知识,特别是STL的元素...
C++模板元编程是一种在编译时执行计算和构建类型的技术,它利用了C++模板的强大功能,将元数据(即关于数据的数据)处理提升到了一个新的层次。在C++中,模板不仅仅是用来创建泛型代码的工具,它们也可以被用作一种...
C++模板元编程是一种在编译时进行计算和代码生成的技术,它利用C++模板机制的强大功能,将元数据转化为可执行的代码。这一技术在提高程序效率、减少运行时开销、实现类型安全和静态多态等方面具有显著优势。在“C++...
C++模板是编程语言中的一个强大特性,它允许程序员创建泛型代码,即代码可以处理多种数据类型。这篇由侯捷等译的《C++ Templates:The Complete Guide》全面介绍了C++模板的各个方面,旨在帮助开发者更高效地利用这...
《数据结构:基于C++模板类的实现》是一本深入探讨如何使用C++语言来构建高效数据结构的书籍。在C++中,模板类是一种强大的工具,它允许我们编写通用的代码,适用于不同类型的对象,这在处理数据结构时特别有用。通过...
C++模板是C++语言中的一个强大特性,它允许程序员创建泛型代码,即能够处理多种数据类型的代码。模板在C++中分为两种主要类型:函数模板和类模板。本篇将深入探讨这两种模板的使用及其重要性。 一、函数模板 函数...