`

Java中用动态代理类实现记忆功能

    博客分类:
  • JAVA
 
阅读更多

记忆是衍生自lisp,python,和perl等过程性语言的一种设计模式,它可以对前次的计算结果进行记忆。 一个实现了记忆功能的函数, 带有显式的cache, 所以, 已经计算过的结果就能直接从cache中获得, 而不用每次都进行计算.

  记忆能显著的提升大计算量代码的效率. 而且是一种可重用的方案.

  本文阐述了在java中使用这一模式的方法,并提供了一个可以提供上述功能的"记忆类":

  foo foo = (foo) memoizer.memoize(new fooimpl());

  这里,foo是一个接口,它含有的方法是需要记忆的.fooimpl是foo的一个实现.foo是foo的一个引用.方法与fooimpl基 本相同,区别在于foo返回的值,会被缓存起来.单个记忆类的优点在于为任何类添加记忆功能是很简单的:定义一个包含需要记忆的方法的接口,然后调用 memoize来实现一个实例.

  为了理解记忆类是怎么实现的,我们将分几步来解释.首先,我解释一下为何缓存能够在需要它的类中实现.然后,我测试一下如何为一个特定的类添加缓存包装器.最后,我解释一下如何才能使得一个缓存包装器能够通用于任意的类.

  为大计算量的程序添加缓存

  作为一个大计算量程序的例子,我们考虑pibinarydigitscalculator这个例子-计算二进制数据pi.仅有的public 方法 calculatebinarydigit带有一个参数:整数n,代表需要精确到的位数.例如,1000000,将会返回小数点后的一百万位,通过 byte值返回-每位为0或者1.(算法可以参考: screen.width-600)this.style.width=screen.width-600;">http://www.cecm.sfu.ca/~pborwein/papers/p123.pdf)

  public class pibinarydigitscalculator {

  /**

  * returns the coefficient of 2^n in the binary

  * expansion of pi.

  * @param n the binary digit of pi to calculate.

  * @throws validitycheckfailedexception if the validity

  * check fails, this means the implementation is buggy

  * or n is too large for sufficient precision to be

  * retained.

  */

  public byte calculatebinarydigit(final int n) {

  return runbbpalgorithm(n);

  }

  private byte runbbpalgorithm(final int n) {

  // lengthy routine goes here ...

  }

  }

  最简单直接的方法来缓存返回值可以通过修改这个类来实现:添加一个map来保存之前计算得到的值,如下:

  import java.util.hashmap;

  public class pibinarydigitscalculator {

  private hashmap cache = new hashmap();

  public synchronized byte calculatebinarydigit(

  final int n) {

  final integer n = new integer(n);

  byte b = (byte) cache.get(n);

  if (b == null) {

  byte b = runbbpalgorithm(n);

  cache.put(n, new byte(b));

  return b;

  } else {

  return b.bytevalue();

  }

  }

  private byte runbbpalgorithm(final int n) {

  // lengthy routine goes here ...

  }

  }

  calculatebinarydigit 方法首先会检查hashmap里面是否缓存了这个关键字-参数n,如果找到了,就直接返回这个值.否则,就会进行这个冗长的计算,并将结果保存到缓存里 面.在添加进hashmap的时候,在原始类型和对象之间还要进行小小的转换.

  尽管这个方法是可行的,但是有几个缺点.首先,进行缓存的代码和正常的算法代码不是显著分开的.一个类,不仅负责进行计算,也要负责进行维护 缓存数据.这样,要进行一些测试就会显得很困难.比如,不能写一个测试程序来测试这个算法持续地返回相同的值,因为,从第二次开始,结果都是直接从 cache中获得了.

  其次,当缓存代码不再需要,移除它会变得困难,因为它和算法块地代码是紧密结合在一起的.所以,要想知道缓存是否带来了很高的效率提升也是很困难的,因为不能写一个测试程序是和缓存数据分开的.当你改进了你的算法,缓存有可能失效-但是这个时候你并不知道.

  第三,缓存代码不能被重用.尽管代码遵从了一个普通的模式,但是都是在一个类- pibinarydigitscalculator里面.

  前面两个问题都可以通过构造一个缓存包装器来解决.

  缓存包装器

  通过使用decorator模式,要分开计算代码和缓存代码是很容易的.首先,定义一个接口,里面定义基本的方法.

  public interface binarydigitscalculator {

  public byte calculatebinarydigit(final int n);

  }

  然后定义两个实现,分别负责两个任务:

  public class pibinarydigitscalculator

  implements binarydigitscalculator {

  public byte calculatebinarydigit(final int n) {

  return runbbpalgorithm(n);

  }

  private byte runbbpalgorithm(final int n) {

  // lengthy routine goes here ...

  }

  }

  import java.util.hashmap;

  public class cachingbinarydigitscalculator implements

  binarydigitscalculator {

  private binarydigitscalculator binarydigitscalculator;

  private hashmap cache = new hashmap();

  public cachingbinarydigitscalculator(

  binarydigitscalculator calculator) {

  this.binarydigitscalculator = calculator;

  }

  public synchronized byte calculatebinarydigit(int n) {

  final integer n = new integer(n);

  byte b = (byte) cache.get(n);

  if (b == null) {

  byte b =

  binarydigitscalculator.calculatebinarydigit(n);

  cache.put(n, new byte(b));

  return b;

  } else {

  return b.bytevalue();

  }

  }

  }

  这是很之前的实现pibinarydigitscalculator的一种简单的refactored版本. cachingbinarydigitscalculator包装了binarydigitscalculator句柄,并增加了缓存,供 calculatebinarydigit的方法调用. 这种方法提高了代码的可读性与可维护性. 用户不能直接使用 binarydigitscalculator接口来实现算法,所以,如果需要关闭缓存块,将是很容易实现的.

  还有,合适的测试程序很容易写出来.比如,我们写一个假的binarydigitscalculator实现,每次 calculatebinarydigit被调用,赋予相同的参数,返回不同的值. 这样,我们就能测试缓存是否工作了,因为如果每次都返回相同的值,则证明缓存是正常工作了. 这种测试在之前那种简单的实现是不可能的。

分享到:
评论

相关推荐

    MATLAB实现基于LSTM-AdaBoost长短期记忆网络结合AdaBoost时间序列预测(含模型描述及示例代码)

    内容概要:本文档详细介绍了基于 MATLAB 实现的 LSTM-AdaBoost 时间序列预测模型,涵盖项目背景、目标、挑战、特点、应用领域以及模型架构和代码示例。随着大数据和AI的发展,时间序列预测变得至关重要。传统方法如 ARIMA 在复杂非线性序列中表现欠佳,因此引入了 LSTM 来捕捉长期依赖性。但 LSTM 存在易陷局部最优、对噪声鲁棒性差的问题,故加入 AdaBoost 提高模型准确性和鲁棒性。两者结合能更好应对非线性和长期依赖的数据,提供更稳定的预测。项目还展示了如何在 MATLAB 中具体实现模型的各个环节。 适用人群:对时间序列预测感兴趣的开发者、研究人员及学生,特别是有一定 MATLAB 编程经验和熟悉深度学习或机器学习基础知识的人群。 使用场景及目标:①适用于金融市场价格预测、气象预报、工业生产故障检测等多种需要时间序列分析的场合;②帮助使用者理解并掌握将LSTM与AdaBoost结合的实现细节及其在提高预测精度和抗噪方面的优势。 其他说明:尽管该模型有诸多优点,但仍存在训练时间长、计算成本高等挑战。文中提及通过优化数据预处理、调整超参数等方式改进性能。同时给出了完整的MATLAB代码实现,便于学习与复现。

    palkert_3ck_01_0918.pdf

    palkert_3ck_01_0918

    pepeljugoski_01_1106.pdf

    pepeljugoski_01_1106

    tatah_01_1107.pdf

    tatah_01_1107

    [AB PLC例程源码][MMS_046393]Motor Speed Reference.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    基于51的步进电机控制系统20250302

    题目:基于单片机的步进电机控制系统 模块: 主控:AT89C52RC 步进电机(ULN2003驱动) 按键(3个) 蓝牙(虚拟终端模拟) 功能: 1、可以通过蓝牙远程控制步进电机转动 2、可以通过按键实现手动与自动控制模式切换。 3、自动模式下,步进电机正转一圈,反转一圈,循环 4、手动模式下可以通过按键控制步进电机转动(顺时针和逆时针)

    [AB PLC例程源码][MMS_041234]Logix Fault Handler.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    [AB PLC例程源码][MMS_042348]Using an Ultra3000 as an Indexer on DeviceNet with a CompactLogix.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    智慧校园平台建设全流程详解:从需求到持续优化

    内容概要:本文详细介绍了建设智慧校园平台所需的六个关键步骤。首先通过需求分析深入了解并确定校方和使用者的具体需求;其次是规划设计阶段,依据所得需求制定全面的建设方案。再者是对现有系统的整合——系统集成,确保新旧平台之间的互操作性和数据一致性。培训支持帮助全校教职工和学生快速熟悉新平台,提高效率。实施试点确保系统逐步稳定部署。最后,强调持续改进的重要性,以适应技术和环境变化。通过这一系列有序的工作,可以使智慧校园建设更为科学高效,减少失败风险。 适用人群:教育领域的决策者和技术人员,包括负责信息化建设和运维的团队成员。 使用场景及目标:用于指导高校和其他各级各类学校规划和发展自身的数字校园生态链;目的是建立更加便捷高效的现代化管理模式和服务机制。 其他说明:智慧校园不仅仅是简单的IT设施升级或软件安装,它涉及到全校范围内的流程再造和创新改革。

    AI淘金实战手册:100+高收益变现案例解析

    该文档系统梳理了人工智能技术在商业场景中的落地路径,聚焦内容生产、电商运营、智能客服、数据分析等12个高潜力领域,提炼出100个可操作性变现模型。内容涵盖AI工具开发、API服务收费、垂直场景解决方案、数据增值服务等多元商业模式,每个思路均配备应用场景拆解、技术实现路径及收益测算框架。重点呈现低代码工具应用、现有平台流量复用、细分领域自动化改造三类轻量化启动方案,为创业者提供从技术选型到盈利闭环的全流程参考。

    palkert_3ck_02_0719.pdf

    palkert_3ck_02_0719

    2006-2023年 地级市-克鲁格曼专业化指数.zip

    克鲁格曼专业化指数,最初是由Krugman于1991年提出,用于反映地区间产业结构的差异,也被用来衡量两个地区间的专业化水平,因而又称地区间专业化指数。该指数的计算公式及其含义可以因应用背景和具体需求的不同而有所调整,但核心都是衡量地区间的产业结构差异或专业化程度。 指标 年份、城市、第一产业人数(first_industry1)、第二产业人数(second_industry1)、第三产业人数(third_industry1)、专业化指数(ksi)。

    [AB PLC例程源码][MMS_046305]R2FX.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    精品推荐-通信技术LTE干货资料合集(19份).zip

    精品推荐,通信技术LTE干货资料合集,19份。 LTE PCI网络规划工具.xlsx LTE-S1切换占比专题优化分析报告.docx LTE_TDD问题定位指导书-吞吐量篇.docx LTE三大常见指标优化指导书.xlsx LTE互操作邻区配置核查原则.docx LTE信令流程详解指导书.docx LTE切换问题定位指导一(定位思路和问题现象).docx LTE劣化小区优化指导手册.docx LTE容量优化高负荷小区优化指导书.docx LTE小区搜索过程学习.docx LTE小区级与邻区级切换参数说明.docx LTE差小区处理思路和步骤.docx LTE干扰日常分析介绍.docx LTE异频同频切换.docx LTE弱覆盖问题分析与优化.docx LTE网优电话面试问题-应答技巧.docx LTE网络切换优化.docx LTE高负荷小区容量优化指导书.docx LTE高铁优化之多频组网优化提升“用户感知,网络价值”.docx

    matlab程序代码项目案例:matlab程序代码项目案例matlab中Toolbox中带有的模型预测工具箱.zip

    matlab程序代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    pepeljugoski_01_0508.pdf

    pepeljugoski_01_0508

    szczepanek_01_0308.pdf

    szczepanek_01_0308

    oif2007.384.01_IEEE.pdf

    oif2007.384.01_IEEE

    stone_3ck_01_0119.pdf

    stone_3ck_01_0119

    oganessyan_01_1107.pdf

    oganessyan_01_1107

Global site tag (gtag.js) - Google Analytics