这篇文章是关于网站性能优化体验的,性能优化是一个复杂的话题,牵涉的东西非常多,我只是按照我的理解列出了性能优化整个过程中需要考虑的种种因素。点到为止,包含的内容以浅显的介绍为主,如果你有见解能告知我那再好不过了。无论如何,希望阅读它的你有所收获。
我眼中的网站性能问题都反映了一个网站的“Availability”(中文叫做可用性,但是这个翻译也不足够达意),以往我的认识是,这个网站如果全部或者部分不可用,那是功能问题,但是如果响应慢、负载差,这才是性能问题;可是后来我逐渐意识到,性能问题涵盖的范围更广,我还没法给出一个准确定义,但是许多非业务逻辑错误引起的网站问题都可能可以算做性能问题,比如可扩展性差,比如单点故障问题。

在网站性能优化的最初阶段,也就是所谓的“第一重境界”,做局部的定位、分析和修正,考虑的仅仅是“优化”,这也是初涉性能优化问题的大多数人的认识。在问题发生以后,发现它和业务逻辑没有太大关系,就开始尝试寻找问题产生的原因并加以解决。
无论是网站无响应还是响应缓慢,还是响应曲线异常波动,比如,可以围绕CPU的使用问自己这样几个问题:
- 从CPU使用看系统是否繁忙?
- 如果系统繁忙,系统在做什么,为什么?(典型问题:HashMap不安全并发导致的死循环)
- 如果系统空闲,那么瓶颈在哪里?(典型问题:IO无响应)
- 如果响应波动,是否存在周期,周期是什么?(典型问题:连接迅速占满,每一周期批量超时断开一批)
- 如果响应波动,性能到波谷时系统在做什么?
- 是否有背景CPU使用?(即无压力下观察CPU的使用情况。典型问题:正执行的定时任务占用过多系统资源)
在这些问题中,情况虽然千变万化,简单地说,CPU的使用是核心,CPU使用率高,说明可能系统在实实在在地做事,反之,需要寻找其他瓶颈。通过结合进程、线程的快照,来初步确定问题的范围。CPU使用率低的情况居多而且容易定位,只需要寻找其他的系统瓶颈;CPU占用率偏高的问题往往比较不容易定位,虽然也有一些办法。关于具体性能问题的定位技术,这里不着过多笔墨,后续有机会详细介绍。
对于一个刚开始做性能优化的网站系统,下面的事情不妨都做一做,会有立竿见影的效果(如果你需要更多的建议,不妨参考这张图):
- 对于使用的成熟的技术,技术社区、官方文档,往往会给出这种技术的白皮书或者优化指导,请参考。比如 Struts2的官方性能调优指南、Java6性能优化白皮书。
-
平台和虚拟机调优。对于使用平台和虚拟机的项目来说,这是必须要做的,一个JVM的参数可以对系统有显著的影响。比如Linux下连接管理的参数,JVM关于堆大小分布的参数等等。
-
前端审查。这里的审查指的是通过Page speed、YSlow等工具,以及一些业界通用的法则和经验(比如yahoo的若干条前端性能优化法则)来评估现有页面的问题。
从使用的工具上说,性能问题的定位很大程度上是面向操作系统、虚拟机系统的问题定位(这里有一些定位方法介绍)。从问题定位的时机上说,又可以分为:
-
截取型:截取系统某个层面的一个快照加以分析。比如一些堆栈切面和分析的工具,jstack、jmap、kill -3、MAT、Heap Analyser等。
-
监控型:监视系统变化,甚至数据流向。比如JProfiler、JConsole、JStat、BTrace等等。
-
验尸型:系统已经宕机了,但是留下了一些“罪证”,在事后来分析它们。最有名的就是JVM挂掉之后可能会留下的hs_err_pid.log,或者是生成的crash dump文件。
好,暂时说到这里,下面来看第二重境界。达到这重境界意味着已经能够跳出“事后优化”的局限了,在设计和编码的过程当中,能够正式和全面地考虑性能的因素,比如:
-
减少使用时间敏感的容器管理,而使用容量或数量敏感的容器管理。比如我往一个缓冲里面存放若干数据,一种设计是每10分钟flush入库一次,还有一种设计是数据到达10M大小的时候flush入库一次,通常情况下,你觉得哪个方案更可靠?
- 线程的统一管理使用。我的经验是,10次对线程创建或者线程池的使用,往往就有5次是会出问题的。
- 避免使用同步Ajax。同步Ajax会造成浏览器假死,直至响应返回。
- 分析对同步、锁的使用。即便在一些有名的开源库中,我们也不止一次发现过不合理的同步设计,N多数据,单一的全局同步块(这是一种性能设计层面上的“中心化”),结果它就成为了瓶颈,改动还不容易下手,很麻烦。
对于不成熟的团队,建议能安排有经验的程序员把关设计文档和编码中的性能问题,把常见的问题列出来参考学习。
达到第二重境界还有一个明显的特征就是在软件流程的前中期就开始做性能目标的论证和性能问题的验证:
-
性能切面分析。这指的是在系统设计初期,为了评估一个系统的性能表现,做出一个性能类似的系统原型,并对其做性能测试和评估,这时候因为性能问题而涉及到方案的变更,影响较小。据我所知,能够做到这一点的项目极少。在大多数团队中,依赖于架构师和掌握话语权的设计者依靠经验来避免性能问题带来的大的方案变更(或者,干脆摔一次跤,再进行痛苦的“重构”)。
- 性能的自动化测试验证。这一步必须伴随着Coding进行才有较大的意义,以便尽早发现性能问题。
- 设计和代码层面的评审。我的博客里面一再地强调评审的价值,不妨看看这篇和这篇。其实功能问题考虑得多、暴露得早,真正有危险的往往都是那些被忽视的非功能性问题,比如性能问题。
最后是第三重境界。达到这重境界的团队能够在早期规划构想阶段就将性能作为一个必备因素包含在内,这可不是随口说说的经验的估计,而是要有数据驱动的理论设计,比如做性能建模,根据市场大小、业务量、服务等级等等计算出性能的具体指标,并且在此要求下做合理的架构设计。
这里涉及的东西有很多,除了数据,还需要有大量的思考,对于一个网站来说,不妨问问如下的问题:
- 数据量会有多大,我该设计什么样的存储?一致性的要求又如何?
- 实时性要求是怎么样的?用户可以接受多少时间的数据延迟?
- 网站需要考虑到什么程度的可伸缩性?
- 哪些流程的数据处理有性能风险,数据量是什么级别的?怎么解决这个问题?
- 主要的业务时间消耗是怎样的,我需要设计怎样的业务流来满足?
所有的性能问题和其他一切非功能性问题一样,都是一定程度上的trade off,所以越优秀的设计者越需要思考,来规划这些问题的解决方案。在规划中因为性能问题而涉及到的因素有哪些,太多太多了,这里列了一些供参考。
要达到第三重境界还要能够预测性能问题。这就需要成熟的监控体系,监控系统的变化,尽快做出反应。
比如国内发生了重大事件,用户量陡增,监控系统能够及时识别出用户量监控曲线一个非常明显的跳跃过程(比如持续事件超过某个值,且曲线斜率超过某个值),发出告警,并且自动扩容来应付潜在的风险。这些,都是建立在常规的业务运营数据收集基础之上的,然后需要做数据挖掘,给出关键点。
再比如互联网应用“缓存为王”。对于缓存的设计,甚至很大程度上决定了应用的成败(如果你很有钱,靠大量的CDN这种非常规路线的另说,呵呵)。缓存的设计需要考虑到缓存的大小、分级、队列、命中率计算、生命周期、更新换页、数据分发、数据一致性和数据持久化等等问题,这些东西往往被很多只重视那些页面展示效果和功能的人所忽视,但如果你是优秀的设计者,你需要积累这些思考。
Think big。有这样一个真实的例子,我们曾经发现页面模板的OGNL性能不高(两次反射之故),遂在项目中把大部分OGNL表达式都改成了EL表达式,花了很多时间精力,性能也确实提高了,但是能提高多少呢?大概只有30%,这是一种细水长流的改进,对系统的破坏性不大,但是收效也不足以令人沾沾自喜,还失去了一些OGNL的灵活性。之后,我们换了一个思路,从大局入手,给页面划分区域,定制缓存框架,引入页面缓存能力,虽然整套方案有些复杂,但是这种架构上的进化,由于页面的生成或者部分生成直接命中了缓存文件,性能一下有了飞跃,提高了600%~800%。这就是Think big,从大处着想,见得到工程大块的结构,需要足够的视野、足够的经验和积累,可以带来显著的效果。
通常系统容量的设计都会要求到峰值容量以上,如果是像秒杀、抢购之类对性能要求非常高的系统,往往还存在一个问题:设计了这么大的容量,平时大部分时间业务量都比较小,这些资源浪费怎么办?(题外话:这大概也是Amazon涉足云存储和云计算的初始缘由吧)
同时,也要看到,性能因素也是一个网站系统发展的最大推动力,再细致的思考也难以兼容那么多未知的场景,不妨多在扩展性和兼容性上下下功夫,避免网站冷清痛苦,网站大热更痛苦。
文章系本人原创,转载请注明作者和出处

- 大小: 39.7 KB
分享到:
相关推荐
这篇“三重境界看海大”的报告,旨在深入剖析海大集团的业务模式、战略发展以及未来前景,为投资者和关注者提供全面的分析视角。以下是基于报告内容的详细解读: 一、第一重境界:饲料行业的领导者 海大集团以其在...
证明SVM的最优性和泛化性能是机器学习理论中的重要课题。 总结来说,SVM是一种高效且灵活的机器学习算法,它以支持向量为基础,通过优化间隔最大化来构建分类边界。深入理解SVM不仅涉及其基本概念,还包括其内在的...
基于Maxwell设计的经典280W 4025RPM高效率科尔摩根12极39槽TBM无框力矩电机:生产与学习双重应用案例,基于Maxwell设计的经典280W高转速科尔摩根TBM无框力矩电机:7615系列案例解析与应用实践,基于maxwwell设计的经典280W,4025RPM 内转子 科尔摩根 12极39槽 TBM无框力矩电机,7615系列。 该案例可用于生产,或者学习用,(157) ,maxwell设计; 280W; 4025RPM内转子; 科尔摩根; 12极39槽TBM无框力矩电机; 7615系列; 生产/学习用。,基于Maxwell设计,高功率280W 12极39槽TBM无框力矩电机:生产与学习双用途案例
基于碳交易的微网优化模型的Matlab设计与实现策略分析,基于碳交易的微网优化模型的Matlab设计与实现探讨,考虑碳交易的微网优化模型matlab ,考虑碳交易; 微网优化模型; MATLAB;,基于Matlab的碳交易微网优化模型研究
二级2025模拟试题(答案版)
OpenCV是一个功能强大的计算机视觉库,它提供了多种工具和算法来处理图像和视频数据。在C++中,OpenCV可以用于实现基础的人脸识别功能,包括从摄像头、图片和视频中识别人脸,以及通过PCA(主成分分析)提取图像轮廓。以下是对本资源大体的介绍: 1. 从摄像头中识别人脸:通过使用OpenCV的Haar特征分类器,我们可以实时从摄像头捕获的视频流中检测人脸。这个过程涉及到将视频帧转换为灰度图像,然后使用预训练的Haar级联分类器来识别人脸区域。 2. 从视频中识别出所有人脸和人眼:在视频流中,除了检测人脸,我们还可以进一步识别人眼。这通常涉及到使用额外的Haar级联分类器来定位人眼区域,从而实现对人脸特征的更细致分析。 3. 从图片中检测出人脸:对于静态图片,OpenCV同样能够检测人脸。通过加载图片,转换为灰度图,然后应用Haar级联分类器,我们可以在图片中标记出人脸的位置。 4. PCA提取图像轮廓:PCA是一种统计方法,用于分析和解释数据中的模式。在图像处理中,PCA可以用来提取图像的主要轮廓特征,这对于人脸识别技术中的面部特征提取尤
麻雀搜索算法(SSA)自适应t分布改进版:卓越性能与优化代码注释,适合深度学习。,自适应t分布改进麻雀搜索算法(TSSA)——卓越的学习样本,优化效果出众,麻雀搜索算法(SSA)改进——采用自适应t分布改进麻雀位置(TSSA),优化后明显要优于基础SSA(代码基本每一步都有注释,代码质量极高,非常适合学习) ,TSSA(自适应t分布麻雀位置算法);注释详尽;高质量代码;适合学习;算法改进结果优异;TSSA相比基础SSA。,自适应T分布优化麻雀搜索算法:代码详解与学习首选(TSSA改进版)
锂电池主动均衡Simulink仿真研究:多种均衡策略与电路架构的深度探讨,锂电池主动均衡与多种均衡策略的Simulink仿真研究:buckboost拓扑及多层次电路分析,锂电池主动均衡simulink仿真 四节电池 基于buckboost(升降压)拓扑 (还有传统电感均衡+开关电容均衡+双向反激均衡+双层准谐振均衡+环形均衡器+cuk+耦合电感)被动均衡电阻式均衡 、分层架构式均衡以及分层式电路均衡,多层次电路,充放电。 ,核心关键词: 锂电池; 主动均衡; Simulink仿真; 四节电池; BuckBoost拓扑; 传统电感均衡; 开关电容均衡; 双向反激均衡; 双层准谐振均衡; 环形均衡器; CUK均衡; 耦合电感均衡; 被动均衡; 电阻式均衡; 分层架构式均衡; 多层次电路; 充放电。,锂电池均衡策略研究:Simulink仿真下的多拓扑主动与被动均衡技术
S7-1500和分布式外围系统ET200MP模块数据
内置式永磁同步电机无位置传感器模型:基于滑膜观测器和MTPA技术的深度探究,内置式永磁同步电机基于滑膜观测器和MTPA的无位置传感器模型研究,基于滑膜观测器和MTPA的内置式永磁同步电机无位置传感器模型 ,基于滑膜观测器;MTPA;内置式永磁同步电机;无位置传感器模型,基于滑膜观测与MTPA算法的永磁同步电机无位置传感器模型
centos7操作系统下安装docker,及docker常用命令、在docker中运行nginx示例,包括 1.设置yum的仓库 2.安装 Docker Engine-Community 3.docker使用 4.查看docker进程是否启动成功 5.docker常用命令及nginx示例 6.常见问题
给曙光服务器安装windows2012r2时候找不到磁盘,问厂家工程师要的raid卡驱动,内含主流大多数品牌raid卡驱动
数学建模相关主题资源2
西门子四轴卧式加工中心后处理系统:828D至840D支持,四轴联动制造解决方案,图档处理与试看程序一应俱全。,西门子四轴卧加后处理系统:支持828D至840D系统,四轴联动高精度制造解决方案,西门子四轴卧加后处理,支持828D~840D系统,支持四轴联动,可制制,看清楚联系,可提供图档处理试看程序 ,核心关键词:西门子四轴卧加后处理; 828D~840D系统支持; 四轴联动; 制程; 联系; 图档处理试看程序。,西门子四轴卧加后处理程序,支持多种系统与四轴联动
MATLAB下基于列约束生成法CCG的两阶段鲁棒优化问题求解入门指南:算法验证与经典文献参考,MATLAB下基于列约束生成法CCG的两阶段鲁棒优化问题求解入门指南:算法验证与文献参考,MATLAB代码:基于列约束生成法CCG的两阶段问题求解 关键词:两阶段鲁棒 列约束生成法 CCG算法 参考文档:《Solving two-stage robust optimization problems using a column-and-constraint generation method》 仿真平台:MATLAB YALMIP+CPLEX 主要内容:代码构建了两阶段鲁棒优化模型,并用文档中的相对简单的算例,进行CCG算法的验证,此篇文献是CCG算法或者列约束生成算法的入门级文献,其经典程度不言而喻,几乎每个搞CCG的两阶段鲁棒的人都绕不过此篇文献 ,两阶段鲁棒;列约束生成法;CCG算法;MATLAB;YALMIP+CPLEX;入门级文献。,MATLAB代码实现:基于两阶段鲁棒与列约束生成法CCG的算法验证研究
“生热研究的全面解读:探究参数已配置的Comsol模型中的18650圆柱锂电池表现”,探究已配置参数的COMSOL模型下的锂电池生热现象:18650圆柱锂电池模拟分析,出一个18650圆柱锂电池comsol模型 参数已配置,生热研究 ,出模型; 18650圆柱锂电池; comsol模型; 参数配置; 生热研究,构建18650电池的COMSOL热研究模型
移动端多端运行的知识付费管理系统源码,TP6+Layui+MySQL后端支持,功能丰富,涵盖直播、点播、管理全功能及礼物互动,基于UniApp跨平台开发的移动端知识付费管理系统源码:多端互通、全功能齐备、后端采用TP6与PHP及Layui前端,搭载MySQL数据库与直播、点播、管理、礼物等功能的强大整合。,知识付费管理系统源码,移动端uniApp开发,app h5 小程序一套代码多端运行,后端php(tp6)+layui+MySQL,功能齐全,直播,点播,管理,礼物等等功能应有尽有 ,知识付费;管理系统源码;移动端uniApp开发;多端运行;后端php(tp6);layui;MySQL;直播点播;管理功能;礼物功能,知识付费管理平台:全功能多端运行系统源码(PHP+Layui+MySQL)
基于Python+Django+MySQL的个性化图书推荐系统:协同过滤推荐,智能部署,用户定制功能,基于Python+Django+MySQL的个性化图书推荐系统:协同过滤推荐,智能部署,用户定制功能,Python+Django+Mysql个性化图书推荐系统 图书在线推荐系统 基于用户、项目、内容的协同过滤推荐算法。 帮远程安装部署 一、项目简介 1、开发工具和实现技术 Python3.8,Django4,mysql8,navicat数据库管理工具,html页面,javascript脚本,jquery脚本,bootstrap前端框架,layer弹窗组件、webuploader文件上传组件等。 2、项目功能 前台用户包含:注册、登录、注销、浏览图书、搜索图书、信息修改、密码修改、兴趣喜好标签、图书评分、图书收藏、图书评论、热点推荐、个性化推荐图书等功能; 后台管理员包含:用户管理、图书管理、图书类型管理、评分管理、收藏管理、评论管理、兴趣喜好标签管理、权限管理等。 个性化推荐功能: 无论是否登录,在前台首页展示热点推荐(根据图书被收藏数量降序推荐)。 登录用户,在前台首页展示个性化推荐
STM32企业级锅炉控制器源码分享:真实项目经验,带注释完整源码助你快速掌握实战经验,STM32企业级锅炉控制器源码:真实项目经验,完整注释,助力初学者快速上手,stm32真实企业项目源码 项目要求与网上搜的那些开发板的例程完全不在一个级别,也不是那些凑合性质的项目可以比拟的。 项目是企业级产品的要求开发的,能够让初学者了解真实的企业项目是怎么样的,增加工作经验 企业真实项目网上稀缺,完整源码带注释,适合没有参与工作或者刚学stm32的增加工作经验, 这是一个锅炉的控制器,有流程图和程序协议的介绍。 ,stm32源码;企业级项目;工作经验;锅炉控制器;流程图;程序协议,基于STM32的真实企业级锅炉控制器项目源码
整车性能目标书:涵盖燃油车、混动车及纯电动车型的十六个性能模块目标定义模板与集成开发指南,整车性能目标书:涵盖燃油车、混动车及纯电动车型的十六个性能模块目标定义模板与集成开发指南,整车性能目标书,汽车性能目标书,十六个性能模块目标定义模板,包含燃油车、混动车型及纯电动车型。 对于整车性能的集成开发具有较高的参考价值 ,整车性能目标书;汽车性能目标书;性能模块目标定义模板;燃油车;混动车型;纯电动车型;集成开发;参考价值,《汽车性能模块化目标书:燃油车、混动车及纯电动车的集成开发参考》