1、
public interface Executor { /** * Executes the given command at some time in the future. The command * may execute in a new thread, in a pooled thread, or in the calling * thread, at the discretion of the <tt>Executor</tt> implementation. * * @param command the runnable task * @throws RejectedExecutionException if this task cannot be * accepted for execution. * @throws NullPointerException if command is null */ void execute(Runnable command); }
//接口ExecutorService继承自Executor,它的目的是为我们管理Thread对象,从而简化并发编程 public interface ExecutorService extends Executor { <T> Future<T> submit(Callable<T> task); <T> Future<T> submit(Runnable task, T result); Future<?> submit(Runnable task); ... }
public interface Callable<V> { /** * Computes a result, or throws an exception if unable to do so. * * @return computed result * @throws Exception if unable to compute a result */ V call() throws Exception; } public interface Runnable { public abstract void run(); }
public interface Future<V> { boolean cancel(boolean mayInterruptIfRunning); /** * Waits if necessary for the computation to complete, and then * retrieves its result. * * @return the computed result */ V get() throws InterruptedException, ExecutionException; V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException; }
Callable接口和Runnable接口相似,区别就是Callable需要实现call方法,而Runnable需要实现run方法;并且,call方法还可以返回任何对象,无论是什么对象,JVM都会当作Object来处理。但是如果使用了泛型,我们就不用每次都对Object进行转换了。
Runnable和Callable都是接口
不同之处:
1.Callable可以返回一个类型V,而Runnable不可以
2.Callable能够抛出checked exception,而Runnable不可以。
3.Runnable是自从java1.1就有了,而Callable是1.5之后才加上去的
4.Callable和Runnable都可以应用于executors。而Thread类只支持Runnable.
上面只是简单的不同,其实这两个接口在用起来差别还是很大的。Callable与executors联合在一起,在任务完成时可立刻获得一个更新了的Future。而Runable却要自己处理
Future接口,一般都是取回Callable执行的状态用的。其中的主要方法:
- cancel,取消Callable的执行,当Callable还没有完成时
- get,获得Callable的返回值
- isCanceled,判断是否取消了
- isDone,判断是否完成
用Executor来构建线程池,应该要做的事:
1).调用Executors类中的静态方法newCachedThreadPool(必要时创建新线程,空闲线程会被保留60秒)或newFixedThreadPool(包含固定数量的线程池)等,返回的是一个实现了ExecutorService接口的ThreadPoolExecutor类或者是一个实现了ScheduledExecutorServiece接口的类对象。
2).调用submit提交Runnable或Callable对象。
3).如果想要取消一个任务,或如果提交Callable对象,那就要保存好返回的Future对象。
4).当不再提交任何任务时,调用shutdown方法。
举2个例子如下:
- package thread.test04;
- import java.util.concurrent.*;
- public class ThreadTestA {
- public static void main(String[] args) {
- ExecutorService e=Executors.newFixedThreadPool(10);
- e.execute(new MyRunnableA());
- e.execute(new MyRunnableB());
- e.shutdown();
- }
- }
- class MyRunnableA implements Runnable{
- public void run(){
- System.out.println("Runnable:run()....");
- int i=0;
- while(i<20){
- i++;
- for(int j=0;j<1000000;j++);
- System.out.println("i="+i);
- }
- }
- }
- class MyRunnableB implements Runnable{
- public void run(){
- char c='A'-1;
- while(c<'Z'){
- c++;
- for(int j=0;j<1000000;j++);
- System.out.println("c="+c);
- }
- }
- }
- package thread.test04;
- import java.util.concurrent.Callable;
- import java.util.concurrent.ExecutionException;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
- import java.util.concurrent.Future;
- public class ThreadTestB {
- public static void main(String[] args) {
- ExecutorService e=Executors.newFixedThreadPool(10);
- Future f1=e.submit(new MyCallableA());
- Future f2=e.submit(new MyCallableA());
- Future f3=e.submit(new MyCallableA());
- System.out.println("--Future.get()....");
- try {
- System.out.println(f1.get());
- System.out.println(f2.get());
- System.out.println(f3.get());
- } catch (InterruptedException e1) {
- e1.printStackTrace();
- } catch (ExecutionException e1) {
- e1.printStackTrace();
- }
- e.shutdown();
- }
- }
- class MyCallableA implements Callable<String>{
- public String call() throws Exception {
- System.out.println("开始执行Callable");
- String[] ss={"zhangsan","lisi"};
- long[] num=new long[2];
- for(int i=0;i<1000000;i++){
- num[(int)(Math.random()*2)]++;
- }
- if(num[0]>num[1]){
- return ss[0];
- }else if(num[0]<num[1]){
- throw new Exception("弃权!");
- }else{
- return ss[1];
- }
- }
- }
来源:http://junlas.iteye.com/blog/846457
/** * Factory and utility methods for {@link Executor}, {@link * ExecutorService}, {@link ScheduledExecutorService}, {@link * ThreadFactory}, and {@link Callable} classes defined in this * package. This class supports the following kinds of methods: * * <ul> * <li> Methods that create and return an {@link ExecutorService} * set up with commonly useful configuration settings. * <li> Methods that create and return a {@link ScheduledExecutorService} * set up with commonly useful configuration settings. * <li> Methods that create and return a "wrapped" ExecutorService, that * disables reconfiguration by making implementation-specific methods * inaccessible. * <li> Methods that create and return a {@link ThreadFactory} * that sets newly created threads to a known state. * <li> Methods that create and return a {@link Callable} * out of other closure-like forms, so they can be used * in execution methods requiring <tt>Callable</tt>. * </ul> * * @since 1.5 * @author Doug Lea */ public class Executors { /** * Creates a thread pool that reuses a fixed number of threads * operating off a shared unbounded queue. At any point, at most * <tt>nThreads</tt> threads will be active processing tasks. * If additional tasks are submitted when all threads are active, * they will wait in the queue until a thread is available. * If any thread terminates due to a failure during execution * prior to shutdown, a new one will take its place if needed to * execute subsequent tasks. The threads in the pool will exist * until it is explicitly {@link ExecutorService#shutdown shutdown}. * * @param nThreads the number of threads in the pool * @return the newly created thread pool * @throws IllegalArgumentException if <tt>nThreads <= 0</tt> */ public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); } /** * Creates a thread pool that reuses a fixed number of threads * operating off a shared unbounded queue, using the provided * ThreadFactory to create new threads when needed. At any point, * at most <tt>nThreads</tt> threads will be active processing * tasks. If additional tasks are submitted when all threads are * active, they will wait in the queue until a thread is * available. If any thread terminates due to a failure during * execution prior to shutdown, a new one will take its place if * needed to execute subsequent tasks. The threads in the pool will * exist until it is explicitly {@link ExecutorService#shutdown * shutdown}. * * @param nThreads the number of threads in the pool * @param threadFactory the factory to use when creating new threads * @return the newly created thread pool * @throws NullPointerException if threadFactory is null * @throws IllegalArgumentException if <tt>nThreads <= 0</tt> */ public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>(), threadFactory); } /** * Creates an Executor that uses a single worker thread operating * off an unbounded queue. (Note however that if this single * thread terminates due to a failure during execution prior to * shutdown, a new one will take its place if needed to execute * subsequent tasks.) Tasks are guaranteed to execute * sequentially, and no more than one task will be active at any * given time. Unlike the otherwise equivalent * <tt>newFixedThreadPool(1)</tt> the returned executor is * guaranteed not to be reconfigurable to use additional threads. * * @return the newly created single-threaded Executor */ public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())); } /** * Creates an Executor that uses a single worker thread operating * off an unbounded queue, and uses the provided ThreadFactory to * create a new thread when needed. Unlike the otherwise * equivalent <tt>newFixedThreadPool(1, threadFactory)</tt> the * returned executor is guaranteed not to be reconfigurable to use * additional threads. * * @param threadFactory the factory to use when creating new * threads * * @return the newly created single-threaded Executor * @throws NullPointerException if threadFactory is null */ public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) { return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>(), threadFactory)); } /** * Creates a thread pool that creates new threads as needed, but * will reuse previously constructed threads when they are * available. These pools will typically improve the performance * of programs that execute many short-lived asynchronous tasks. * Calls to <tt>execute</tt> will reuse previously constructed * threads if available. If no existing thread is available, a new * thread will be created and added to the pool. Threads that have * not been used for sixty seconds are terminated and removed from * the cache. Thus, a pool that remains idle for long enough will * not consume any resources. Note that pools with similar * properties but different details (for example, timeout parameters) * may be created using {@link ThreadPoolExecutor} constructors. * * @return the newly created thread pool */ public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>()); } /** * Creates a thread pool that creates new threads as needed, but * will reuse previously constructed threads when they are * available, and uses the provided * ThreadFactory to create new threads when needed. * @param threadFactory the factory to use when creating new threads * @return the newly created thread pool * @throws NullPointerException if threadFactory is null */ public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>(), threadFactory); } /** * Creates a single-threaded executor that can schedule commands * to run after a given delay, or to execute periodically. * (Note however that if this single * thread terminates due to a failure during execution prior to * shutdown, a new one will take its place if needed to execute * subsequent tasks.) Tasks are guaranteed to execute * sequentially, and no more than one task will be active at any * given time. Unlike the otherwise equivalent * <tt>newScheduledThreadPool(1)</tt> the returned executor is * guaranteed not to be reconfigurable to use additional threads. * @return the newly created scheduled executor */ public static ScheduledExecutorService newSingleThreadScheduledExecutor() { return new DelegatedScheduledExecutorService (new ScheduledThreadPoolExecutor(1)); } /** * Creates a single-threaded executor that can schedule commands * to run after a given delay, or to execute periodically. (Note * however that if this single thread terminates due to a failure * during execution prior to shutdown, a new one will take its * place if needed to execute subsequent tasks.) Tasks are * guaranteed to execute sequentially, and no more than one task * will be active at any given time. Unlike the otherwise * equivalent <tt>newScheduledThreadPool(1, threadFactory)</tt> * the returned executor is guaranteed not to be reconfigurable to * use additional threads. * @param threadFactory the factory to use when creating new * threads * @return a newly created scheduled executor * @throws NullPointerException if threadFactory is null */ public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory) { return new DelegatedScheduledExecutorService (new ScheduledThreadPoolExecutor(1, threadFactory)); } /** * Creates a thread pool that can schedule commands to run after a * given delay, or to execute periodically. * @param corePoolSize the number of threads to keep in the pool, * even if they are idle. * @return a newly created scheduled thread pool * @throws IllegalArgumentException if <tt>corePoolSize < 0</tt> */ public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) { return new ScheduledThreadPoolExecutor(corePoolSize); } /** * Creates a thread pool that can schedule commands to run after a * given delay, or to execute periodically. * @param corePoolSize the number of threads to keep in the pool, * even if they are idle. * @param threadFactory the factory to use when the executor * creates a new thread. * @return a newly created scheduled thread pool * @throws IllegalArgumentException if <tt>corePoolSize < 0</tt> * @throws NullPointerException if threadFactory is null */ public static ScheduledExecutorService newScheduledThreadPool( int corePoolSize, ThreadFactory threadFactory) { return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory); } ........ /** Cannot instantiate. */ private Executors() {} }
相关推荐
大家都知道Runnable和Callable接口都可以作为其他线程执行的任务,但是Runnable接口的run方法没有返回值,而Callable接口的call方法有返回值,那么Callable接口是如何做到的呢?在此我给出一个Demo,看看通过...
Callable接口在Java中扮演着重要的角色,特别是在多线程编程中。...通过lambda表达式的使用,实现Callable接口的任务变得更加简洁和直观。在实际开发中,合理利用Callable接口可以提高代码的可读性和效率。
Callable接口和Runnable接口都是用于多线程的接口,但是它们有所不同。Runnable接口没有返回值,而Callable接口可以返回执行结果。Runnable接口的run()方法返回void类型,而Callable接口的call()方法可以返回任何...
Callable接口和Runnable接口都是Java中的线程接口,但是它们有所不同: 1. Callable接口:Callable接口可以返回执行结果,可以抛出检查异常,适用于需要返回结果或抛出异常的场景。 2. Runnable接口:Runnable接口...
在Java编程中,泛型是一种强大的特性,允许我们在类、接口和方法中使用类型参数。这提供了编译时的类型安全,减少了类型转换的错误,并提高了代码的可读性和重用性。例如,在集合框架中,通过泛型我们可以确保集合只...
首先,Java 5开始,Java提供了Callable接口,该接口是Runnable接口的增强版,Callable接口提供了一个call()方法,可以看作是线程的执行体,但call()方法比run()方法更强大。call()方法可以有返回值。call()方法可以...
首先,Callable接口与Runnable接口类似,都是用于创建新线程的接口。但是,Runnable接口的run()方法无返回值,而Callable的call()方法可以返回一个结果,并且允许在计算过程中抛出异常。在上述示例中,`MyThread`类...
`Future`、`FutureTask`、`Callable`和`Runnable`是Java并发编程中的核心接口和类,它们在Android开发中同样有着广泛的应用。下面将详细介绍这些概念以及它们如何协同工作。 1. `Runnable`: 这是Java中最基础的多...
Callable接口的基本用法 2.1 创建Callable任务 2.2 提交Callable任务 2.3 获取任务执行结果 Future接口的使用 3.1 获取任务执行状态 3.2 取消任务的执行 Callable与Runnable的对比 Callable的异常处理 Callable的...
通过使用 Callable 接口和 FutureTask 类,可以实现复杂的异步任务,并且可以获取任务的执行结果。 知识点 * Callable 接口的定义和实现 * FutureTask 类的使用 *异步任务的执行和结果获取 *线程的缓存和阻塞问题 ...
Callable接口与Runnable接口的区别在于Callable接口可以返回结果并抛出异常,而Runnable接口不能返回结果也不能抛出异常。 在实现Callable接口时,我们需要重写call()方法,该方法定义了要执行的任务。例如,我们...
2. **Callable**: 相比Runnable,Callable接口提供了更强大的功能,它包含一个带返回值的`call()`方法。这使得Callable任务能够返回计算结果或抛出异常。例如,如果一个任务需要计算一个复杂的数学问题,Callable...
在Java中,有三种常见的创建线程的方式:继承Thread类、实现Runnable接口以及使用Callable接口。下面将对这三种方式的使用、优缺点进行详细对比。 1. 继承Thread类 这种方式是最直接的创建线程的方法,通过创建...
从 Callable 的定义可以看出,Callable 接口类似于 Runnable 接口,两者都是为那些其实例可能被另一个线程执行的类设计的。方法可以有返回值,并且可以抛出异常。但是,Runnable 不可以返回结果。 Callable 需要...
Runnable是执行工作的独立任务,但是它不返回任何值,如果你希望任务在完成时能够返回一个值,那么可以实现Callable接口而不是Runnable接口。在Java SE5中引入的Callable是一种具有类型参数的泛型,它的类型参数表示...
这是Callable和Runnable接口最大的区别。 Future接口是Java多线程编程中用于描述异步计算的结果的接口。它提供了检查计算是否完成的方法,以等待计算的完成,并检索计算的结果。通过Future对象可了解任务执行情况,...
在Java中,实现多线程有两种主要方式:继承Thread类和实现Runnable接口。此外,Java 5引入了Callable接口,它提供了一种更灵活的方式来创建线程,特别是当需要从线程中返回结果时。 Callable接口类似于Runnable,但...
与Runnable接口相比,Callable接口提供了更强大的功能,因为Runnable只能定义无返回值的任务,而Callable可以定义有返回值的任务。这篇教程将深入探讨如何在Java中使用Callable。 Callable接口位于`java.util....
在Java编程中,创建线程主要有三种方式:继承Thread类、实现Runnable接口以及实现Callable接口。下面我们将逐一探讨这些方式的细节。 **方式一:继承Thread类实现多线程** 这种方式是最直观的创建线程的方法。首先...