但凡初次接触MongoDB的人,无不惊讶于它对内存的贪得无厌,至于个中缘由,我先讲讲Linux是如何管理内存的,再说说MongoDB是如何
使用内存的,答案自然就清楚了。
据说带着问题学习更有效,那就先看一个MongoDB服务器的top命令结果:
shell> top -p $(pidof mongod)Mem: 32872124k total, 30065320k used, 2806804k free, 245020k buffersSwap: 2097144k total,
100k used, 2097044k free, 26482048k cached VIRT RES SHR %MEM1892g 21g 21g 69.6
这台MongoDB服务器有没有性能问题?大家可以一边思考一边继续阅读。
先讲讲Linux是如何管理内存的
在Linux里(别的系统也差不多),内存有物理内存和虚拟内存之说,物理内存是什么自然无需解释,虚拟内存实际是物理内存的抽象,多数
情况下,出于方便性的考虑,程序访问的都是虚拟内存地址,然后操作系统会通过Page Table机制把它翻译成物理内存地址,详细说明可以
参考Understanding Memory和Understanding Virtual Memory,至于程序是如何使用虚拟内存的,可以参考Playing with Virtual Memory,这
里就不多费口舌了。
很多人会把虚拟内存和Swap混为一谈,实际上Swap只是虚拟内存引申出的一种技术而已:操作系统一旦物理内存不足,为了腾出内存空间
存放新内容,就会把当前物理内存中的内容放到交换分区里,稍后用到的时候再取回来,需要注意的是,Swap的使用可能会带来性能问题,
偶尔为之无需紧张,糟糕的是物理内存和交换分区频繁的发生数据交换,这被称之为Swap颠簸,一旦发生这种情况,先要明确是什么原因造
成的,如果是内存不足就好办了,加内存就可以解决,不过有的时候即使内存充足也可能会出现这种问题,比如MySQL就有可能出现这样的
情况,一个可选的解决方法是限制使用Swap:
shell> sysctl -w vm.swappiness=0
查看内存情况最常用的是free命令:
shell> free -m total used free shared buffers cachedMem:
32101 29377 2723 0 239 25880-/+ buffers/cache: 3258 28842Swap: 2047 0 2047
新手看到used一栏数值偏大,free一栏数值偏小,往往会认为内存要用光了。其实并非如此,之所以这样是因为每当我们操作文件的时
候,Linux都会尽可能的把文件缓存到内存里,这样下次访问的时候,就可以直接从内存中取结果,所以cached一栏的数值非常的大,不过
不用担心,这部分内存是可回收的,操作系统的虚拟内存管理器会按照LRU算法淘汰冷数据。还有一个buffers,也是可回收的,不过它是保
留给块设备使用的。
知道了原理,我们就可以推算出系统可用的内存是free + buffers + cached:
shell> echo $((2723 + 239 + 25880))28842
至于系统实际使用的内存是used – buffers – cached:
shell> echo $((29377 - 239 - 25880))3258
除了free命令,还可以使用sar命令:
shell> sar -rkbmemfree kbmemused %memused kbbuffers kbcached
3224392 29647732 90.19 246116 26070160shell> sar -Wpswpin/s pswpout/s 0.00 0.00
希望你没有被%memused吓到,如果不幸言中,重读本文。
再说说MongoDB是如何使用内存的
目前,MongoDB使用的是内存映射存储引擎,它会把数据文件映射到内存中,如果是读操作,内存中的数据起到缓存的作用,如果是写操
作,内存还可以把随机的写操作转换成顺序的写操作,总之可以大幅度提升性能。MongoDB并不干涉内存管理工作,而是把这些工作留给操
作系统的虚拟内存管理器去处理,这样做的好处是简化了MongoDB的工作,但坏处是你没有方法很方便的控制MongoDB占多大内存,幸运
的是虚拟内存管理器的存在让我们多数时候并不需要关心这个问题。
MongoDB的内存使用机制让它在缓存重建方面更有优势,简而言之:如果重启进程,那么缓存依然有效,如果重启系统,那么可以通过拷贝
数据文件到/dev/null的方式来重建缓存,更详细的描述请参考:Cache Reheating – Not to be Ignored。
有时候,即便MongoDB使用的是64位操作系统,也可能会遭遇OOM问题,出现这种情况,多半是因为限制了内存的大小所致,可以这样查
看当前值:
shell> ulimit -a | grep memory
多数操作系统缺省都是把它设置成unlimited的,如果你的操作系统不是,可以这样修改:
shell> ulimit -m unlimitedshell> ulimit -v unlimited
注:ulimit的使用是有上下文的,最好放在MongoDB的启动脚本里。
有时候,MongoDB连接数过多的话,会拖累性能,可以通过serverStatus查询连接数:
mongo> db.serverStatus().connections
每个连接都是一个线程,需要一个Stack,Linux下缺省的Stack设置一般比较大:
shell> ulimit -a | grep stackstack size (kbytes, -s) 10240
至于MongoDB实际使用的Stack大小,可以用如下命令确认(单位:K):
shell> cat /proc/$(pidof mongod)/limits | grep stack | awk -F 'size' '{print int($NF)/1024}'
如果Stack过大(比如:10240K)的话没有意义,简单对照命令结果中的Size和Rss:
shell> cat /proc/$(pidof mongod)/smaps | grep 10240 -A 10
所有连接消耗的内存加起来会相当惊人,推荐把Stack设置小一点,比如说1024:
shell> ulimit -s 1024
注:从开始,MongoDB会在启动时自动设置Stack。
有时候,出于某些原因,你可能想释放掉MongoDB占用的内存,不过前面说了,内存管理工作是由虚拟内存管理器控制的,幸好可以使用
MongoDB内置的closeAllDatabases命令达到目的:
mongo> use adminmongo> db.runCommand({closeAllDatabases:1})
另外,通过调整内核参数drop_caches也可以释放缓存:
shell> sysctl -w vm.drop_caches=1
平时可以通过mongo命令行来监控MongoDB的内存使用情况,如下所示:
mongo> db.serverStatus().mem:{ "resident" : 22346, "virtual" : 1938524, "mapped" : 962283}
还可以通过mongostat命令来监控MongoDB的内存使用情况,如下所示:
shell> mongostatmapped vsize res faults 940g 1893g 21.9g 0
其中内存相关字段的含义是:
mapped:映射到内存的数据大小
visze:占用的虚拟内存大小
res:占用的物理内存大小
注:如果操作不能在内存中完成,结果faults列的数值不会是0,视大小可能有性能问题。
在上面的结果中,vsize是mapped的两倍,而mapped等于数据文件的大小,所以说vsize是数据文件的两倍,之所以会这样,是因为本例中,MongoDB开启了journal,需要在内存里多映射一次数据文件,如果关闭journal,则vsize和mapped大致相当。
如果想验证这一点,可以在开启或关闭journal后,通过pmap命令来观察文件映射情况:
shell> pmap $(pidof mongod)
到底MongoDB配备多大内存合适?宽泛点来说,多多益善,如果要确切点来说,这实际取决于你的数据及索引的大小,内存如果能够装下全
部数据加索引是最佳情况,不过很多时候,数据都会比内存大,比如本文所涉及的MongoDB实例:
mongo> db.stats(){ "dataSize" : 1004862191980, "indexSize" : 1335929664}
本例中索引只有1G多,内存完全能装下,而数据文件则达到了1T,估计很难找到这么大内存,此时保证内存能装下热数据即可,至于热数
据是多少,取决于具体的应用。如此一来内存大小就明确了:内存 > 索引 + 热数据,最好有点富余,毕竟操作系统本身正常运转也需要消耗
一部分内存。
关于MongoDB与内存的话题,大家还可以参考官方文档中的相关介绍。
转载自:http://hi.baidu.com/yangdaming1983/blog/item/8d6815ca4548c81d93457e08.html
分享到:
相关推荐
MongoDB与内存.pdf MongoDB与内存.pdf MongoDB与内存.pdf MongoDB与内存.pdf MongoDB与内存.pdf MongoDB与内存.pdf MongoDB与内存.pdf
首先,理解MongoDB内存管理的基础至关重要。MongoDB使用一种名为MMAPv1或WiredTiger的存储引擎来处理数据。MMEPv1(Memory-Mapped Files)是早期版本的默认引擎,它将数据文件映射到操作系统内存,从而实现快速的...
MongoDB限制内存批处理.bat,这个仅仅是个批处理,实际可以参考我的博客里的dos命令,上次批处理只是为了方便他人
默认情况下,mongodb占用的内存大小为: Starting in 3.4, the WiredTiger internal cache, by default, will use the larger of either: 50% of RAM minus 1 GB, or 256 MB. 即 (总内存 × 50% - 1GB) 和 (256...
10. 性能优化:根据你的具体需求,可以调整MongoDB的性能设置,如内存使用、索引策略和复制集配置。 MongoDB 7.0.0版本可能引入了新的特性、改进和修复,因此在升级前,建议阅读官方文档,了解新版本的详细信息和...
- 高性能:MongoDB 使用内存映射技术提高读写速度,支持嵌入式数据模型减少IO操作,同时提供索引来加速查询。 - 高可靠性:通过副本集实现数据冗余和故障转移,确保服务的连续性。 - 自动扩展:MongoDB 支持水平...
解决MongoDB内存过大的方法主要有以下几个步骤: 1. **配置WiredTiger缓存大小**: 可以通过修改MongoDB配置文件(通常名为`mongodb.conf`)来限制WiredTiger缓存的大小。添加或修改以下配置项: ```bash ...
MongoDB的索引是数据库性能优化的关键因素,与MySQL、Oracle等关系型数据库中的索引原理相似,但具有自身的特性和限制。MongoDB的索引建立在Collection(表)级别,采用B-树数据结构来加速查询和排序操作。 1. 默认...
以限制mongodb的内存大小为例。 mkdir /cgroup/memory/test/ echo 50M > /cgroup/memory/test/memory.limit_in_bytes echo 50M > /cgroup/memory/test/memory.memsw.limit_in_bytes cgexec -g memory:test mongod -...
### MySQL与MongoDB性能对比分析 #### 测试背景与目的 随着大数据时代的到来,数据库的选择对系统的性能至关重要。本报告旨在通过一系列实验对比MySQL和MongoDB两种不同类型的数据库(关系型数据库与NoSQL数据库)...
3. 安装过程:与64位版本相似,32位MongoDB的安装步骤包括下载安装包、运行安装程序、配置服务和启动数据库服务。在Windows上,通常通过“MongoDB Server 32-bit”安装程序进行。 4. 配置文件:MongoDB的配置文件...
#### 二、MongoDB内部文件与内存管理详解 **2.1 数据库文件结构** - MongoDB的数据库文件存储在磁盘上,每个数据库对应一系列文件,包括数据文件和索引文件。 - 数据文件以固定的大小递增,最大不超过2GB。 - 索引...
- 性能指标:使用`top`命令或者第三方工具(如MongoDB Compass)监控数据库的性能,如内存使用、磁盘I/O等。 7. **集群和复制集** - 集群:MongoDB支持分片集群,可以水平扩展存储和处理能力。这需要多个MongoDB...
此外,MongoDB在大规模数据插入时对系统资源(尤其是内存)的消耗更为显著。 针对这些发现,建议在实际应用中根据数据特性和应用场景选择合适的数据库类型。如果主要处理大量非结构化数据,并且对数据写入速度有较...
7. **高性能**: MongoDB使用内存映射技术,将数据存储在内存中以实现快速读写,同时利用磁盘I/O进行持久化,确保数据安全。 8. **高可用性**: 副本集(Replica Sets)是MongoDB的一种高可用性机制,它能自动在多个...
9. **实时统计**:实时监控MongoDB服务器的性能指标,如内存使用、CPU占用、网络流量等,帮助用户及时发现和解决问题。 10. **版本兼容性**:NoSQLBooster持续更新以保持与最新版本的MongoDB兼容,确保用户始终能够...
3. **高性能**:MongoDB采用内存映射技术,将数据存储在内存中,读写速度非常快,尤其适合实时查询和分析。 4. **灵活查询**:MongoDB提供了强大的查询语言MongoDB Shell,支持丰富的查询操作,包括索引、聚合框架...