`
vanadiumlin
  • 浏览: 504737 次
  • 性别: Icon_minigender_1
  • 来自: 广州
社区版块
存档分类
最新评论

微博先锋:Twitter系统结构分析

 
阅读更多


      时常听到“浮躁”这个词,批评现代人不求甚解,缺乏严谨踏实的作风。这种批评有狭隘之嫌。每代人所处的环境不同,面临的问题不同,所以逐渐养成一种风气,去适应新的环境,解决新的问题。

  几百年前,人们读长篇小说,看歌剧,听交响乐。到了二十世纪,大家读杂志报纸,看电影电视,听流行歌曲。信息时代,人们上网,读博客,看视频。在这些表象的背后,促成这些风气进化的,是信息的产量与传播速度的激增。面对海量而且迅速更新的信息,人人捧读红楼梦,一唱三咏的局面是难以想象的。取而代之的,是要求信息的篇幅简短,而重点突出。

  随着信息爆炸的加剧,微博客网站Twitter横空出世了。用横空出世这个词来形容Twitter的成长,并不夸张。从2006年5月Twitter上线,到2007年12月,一年半的时间里,Twitter用户数从0增长到6.6万。又过了一年,2008年12月,Twitter的用户数达到5百万。[1]

  Twitter用户数的急剧攀升,与几次重大事件有关,2007年3月美国SXSW音乐节,2008年11月印度孟买的恐怖事件,2009年1月奥巴马总统就职,2009年6月伊朗选举危机等等。重大事件的报导,特点是读者多,更新快。所以,Twitter网站的成功,先决条件是能够同时给千万用户提供服务,而且提供服务的速度要快。 [2,3,4]

  有观点认为,Twitter的业务逻辑简单,所以竞争门槛低。前半句正确,但是后半句有商榷余地。Twitter的竞争力,离不开严谨的系统架构设计。

  【1】万事开头易

  Twitter的核心业务逻辑,在于Following和Be followed。[5]

  进入Twitter个人主页,你会看到你following的那些作者,最近发表的微博客。所谓微博客,就是一则短信,Twitter规定,短信的长度不得超过140个字。短信不仅可以包含普通文字信息,也可以包含URL,指向某个网页,或者照片及视频等等。这就是following的过程。

  当你写了一则短信并发表以后,你的followers会立刻在他们的个人主页中看到你写的最新短信。这就是be followed的过程。

  实现这个业务流程似乎很容易。

  1. 为每一个注册用户订制一个Be-followed的表,主要内容是每一个follower的ID。同时,也订制一个Following的表,主要内容是每一个following作者的ID。

  2. 当用户打开自己的个人空间时,Twitter先查阅Following表,找到所有following的作者的ID。然后去数据库读取每一位作者最近写的短信。汇总后按时间顺序显示在用户的个人主页上。

  3. 当用户写了一则短信时,Twitter先查阅Be-followed表,找到所有followers的IDs。然后逐个更新那些followers的主页。

  如果有follower正在阅读他的Twitter个人主页,主页里暗含的JavaScript会自动每隔几十秒,访问一下Twitter服务器,检查正在看的这个个人主页是否有更新。如果有更新,立刻下载新的主页内容。这样follower就能读到最新发表的短信了。

  从作者发表到读者获取,中间的延迟,取决于JavaScript更新的间隔,以及Twitter服务器更新每个follower的主页的时间。

  从系统架构上来说,似乎传统的三段论(Three-tier architecture [6]),足够满足这个业务逻辑的需要。事实上,最初的Twitter系统架构,的确就是三段论。

    【2】三段论

  网站的架构设计,传统的做法是三段论。所谓“传统的”,并不等同于“过时的”。大型网站的架构设计,强调实用。新潮的设计,固然吸引人,但是技术可能不成熟,风险高。所以,很多大型网站,走的是稳妥的传统的路子。

  2006年5月Twitter刚上线的时候,为了简化网站的开发,他们使用了Ruby-On-Rails工具,而Ruby-On-Rails的设计思想,就是三段论。

  1. 前段,即表述层(Presentation Tier) 用的工具是Apache Web Server,主要任务是解析HTTP协议,把来自不同用户的,不同类型的请求,分发给逻辑层。

  2. 中段,即逻辑层 (Logic Tier)用的工具是Mongrel Rails Server,利用Rails现成的模块,降低开发的工作量。

  3. 后段,即数据层 (Data Tier) 用的工具是MySQL 数据库。

  先说后段,数据层。

  Twitter 的服务,可以概括为两个核心,1. 用户,2. 短信。用户与用户之间的关系,是追与被追的关系,也就是Following和Be followed。对于一个用户来说,他只读自己“追”的那些人写的短信。而他自己写的短信,只有那些“追”自己的人才会读。抓住这两个核心,就不难理解 Twitter的其它功能是如何实现的[7]。

  围绕这两个核心,就可以着手设计Data Schema,也就是存放在数据层(Data Tier)中的数据的组织方式。不妨设置三个表[8],

  1. 用户表:用户ID,姓名,登录名和密码,状态(在线与否)。

  2. 短信表:短信ID,作者ID,正文(定长,140字),时间戳。

  3. 用户关系表,记录追与被追的关系:用户ID,他追的用户IDs (Following),追他的用户IDs (Be followed)。

  再说中段,逻辑层。

  当用户发表一条短信的时候,执行以下五个步骤,

  1. 把该短信记录到“短信表” 中去。

  2. 从“用户关系表”中取出追他的用户的IDs。

  3. 有些追他的用户目前在线,另一些可能离线。在线与否的状态,可以在“用户表”中查到。过滤掉那些离线的用户的IDs。

  4. 把那些追他的并且目前在线的用户的IDs,逐个推进一个队列(Queue)中去。

  5. 从这个队列中,逐个取出那些追他的并且目前在线的用户的IDs,并且更新这些人的主页,也就是添加最新发表的这条短信。

  以上这五个步骤,都由逻辑层(Logic Tier)负责。前三步容易解决,都是简单的数据库操作。最后两步,需要用到一个辅助工具,队列。队列的意义在于,分离了任务的产生与任务的执行。

  队列的实现方式有多种,例如Apache Mina[9]就可以用来做队列。但是Twitter团队自己动手实现了一个队列,Kestrel [10,11]。Mina与Kestrel,各自有什么优缺点,似乎还没人做过详细比较。

  不管是Kestrel还是Mina,看起来都很复杂。或许有人问,为什么不用简单的数据结构来实现队列,例如动态链表,甚至静态数组?如果逻辑层只在一台服务器上运行,那么对动态链表和静态数组这样的简单的数据结构,稍加改造,的确可以当作队列使用。Kestrel和Mina这些“重量级”的队列,意义在于支持联络多台机器的,分布式的队列。在本系列以后的篇幅中,将会重点介绍。

  最后说说前段,表述层。

  表述层的主要职能有两 个,1. HTTP协议处理器(HTTP Processor),包括拆解接收到的用户请求,以及封装需要发出的结果。2. 分发器(Dispatcher),把接收到的用户请求,分发给逻辑层的机器处理。如果逻辑层只有一台机器,那么分发器无意义。但是如果逻辑层由多台机器组成,什么样的请求,发给逻辑层里面哪一台机器,就大有讲究了。逻辑层里众多机器,可能各自专门负责特定的功能,而在同功能的机器之间,要分摊工作,使负载均衡。

  访问Twitter网站的,不仅仅是浏览器,而且还有手机,还有像QQ那样的电脑桌面工具,另外还有各式各样的网站插件,以便把其它网站联系到Twitter.com上来[12]。因此,Twitter的访问者与Twitter网站之间的通讯协议,不一定是HTTP,也存在其它协议。

  三段论的Twitter架构,主要是针对HTTP协议的终端。但是对于其它协议的终端,Twitter的架构没有明显地划分成三段,而是把表述层和逻辑层合二为一,在Twitter的文献中,这二合一经常被称为“API”。

  综上所述,一个能够完成Twitter基本功能的,简单的架构如Figure 1 所示。或许大家会觉得疑惑,这么出名的网站,架构就这么简单?Yes and No,2006年5月Twitter刚上线的时候,Twitter架构与Figure 1差距不大,不一样的地方在于加了一些简单的缓存(Cache)。即便到了现在,Twitter的架构依然可以清晰地看到Figure 1 的轮廓。
 

 


    【3】Cache == Cash

  Cache == Cash,缓存等于现金收入。虽然这话有点夸张,但是正确使用缓存,对于大型网站的建设,是至关重要的大事。网站在回应用户请求时的反应速度,是影响用户体验的一大因素。而影响速度的原因有很多,其中一个重要的原因在于硬盘的读写(Disk IO)。

  Table 1 比较了内存(RAM),硬盘(Disk),以及新型的闪存(Flash),在读写方面的速度比较。硬盘的读写,速度比内存的慢了百万倍。所以,要提高网站的速度,一个重要措施是尽可能把数据缓存在内存里。当然,在硬盘里也必须保留一个拷贝,以此防范万一由于断电,内存里的数据丢失的情况发生。

 


    Twitter 工程师认为,一个用户体验良好的网站,当一个用户请求到达以后,应该在平均500ms以内完成回应。而Twitter的理想,是达到200ms- 300ms的反应速度[17]。因此在网站架构上,Twitter大规模地,多层次多方式地使用缓存。Twitter在缓存使用方面的实践,以及从这些实践中总结出来的经验教训,是Twitter网站架构的一大看点。

 


   哪里需要缓存?越是Disk IO频繁的地方,越需要缓存。

  前面说到,Twitter业务的核心有两个,用户和短信(Tweet)。围绕这两个核心,数据库中存放着若干表,其中最重要的有三个,如下所示。这三个表的设置,是旁观者的猜测,不一定与Twitter的设置完全一致。但是万变不离其宗,相信即便有所不同,也不会本质区别。

  1. 用户表:用户ID,姓名,登录名和密码,状态(在线与否)。
  2. 短信表:短信ID,作者ID,正文(定长,140字),时间戳。
  3. 用户关系表,记录追与被追的关系:用户ID,他追的用户IDs (Following),追他的用户IDs (Be followed)。

  有没有必要把这几个核心的数据库表统统存放到缓存中去?Twitter的做法是把这些表拆解,把其中读写最频繁的列放进缓存。

  1. Vector Cache and Row Cache

  具体来说,Twitter工程师认为最重要的列是IDs。即新发表的短信的IDs,以及被频繁阅读的热门短信的IDs,相关作者的IDs,以及订阅这些作者的读者的IDs。把这些IDs存放进缓存 (Stores arrays of tweet pkeys [14])。在Twitter文献中,把存放这些IDs的缓存空间,称为Vector Cache [14]。

  Twitter工程师认为,读取最频繁的内容是这些IDs,而短信的正文在其次。所以他们决定,在优先保证Vector Cache所需资源的前提下,其次重要的工作才是设立Row Cache,用于存放短信正文。

  命中率(Hit Rate or Hit Ratio)是测量缓存效果的最重要指标。如果一个或者多个用户读取100条内容,其中99条内容存放在缓存中,那么缓存的命中率就是99%。命中率越高,说明缓存的贡献越大。

  设立Vector Cache和Row Cache后,观测实际运行的结果,发现Vector Cache的命中率是99%,而Row Cache的命中率是95%,证实了Twitter工程师早先押注的,先IDs后正文的判断。

  Vector Cache和Row Cache,使用的工具都是开源的MemCached [15]。

  2. Fragment Cache and Page Cache

  前文说到,访问Twitter网站的,不仅仅是浏览器,而且还有手机,还有像QQ那样的电脑桌面工具,另外还有各式各样的网站插件,以便把其它网站联系到Twitter.com上来[12]。接待这两类用户的,是以Apache Web Server为门户的Web通道,以及被称为“API”的通道。其中API通道受理的流量占总流量的80%-90% [16]。

  所以,继Vector Cache和Row Cache以后,Twitter工程师们把进一步建筑缓存的工作,重点放在如何提高API通道的反应速度上。

  读者页面的主体,显示的是一条又一条短信。不妨把整个页面分割成若干局部,每个局部对应一条短信。所谓Fragment,就是指页面的局部。除短信外,其它内容例如Twitter logo等等,也是Fragment。如果一个作者拥有众多读者,那么缓存这个作者写的短信的布局页面(Fragment),就可以提高网站整体的读取效率。这就是Fragment Cache的使命。

  对于一些人气很旺的作者,读者们不仅会读他写的短信,而且会访问他的主页,所以,也有必要缓存这些人气作者的个人主页。这就是Page Cache的使命。

  Fragment Cache和Page Cache,使用的工具也是MemCached。

  观测实际运行的结果,Fragment Cache的命中率高达95%,而Page Cache的命中率只有40%。虽然Page Cache的命中率低,但是它的内容是整个个人主页,所以占用的空间却不小。为了防止Page Cache争夺Fragment Cache的空间,在物理部署时,Twitter工程师们把Page Cache分离到不同的机器上去。

  3. HTTP Accelerator

  解决了API通道的缓存问题,接下去Twitter工程师们着手处理Web通道的缓存问题。经过分析,他们认为Web通道的压力,主要来自于搜索。尤其是面临突发事件时,读者们会搜索相关短信,而不理会这些短信的作者,是不是自己“追”的那些作者。

  要降低搜索的压力,不妨把搜索关键词,及其对应的搜索结果,缓存起来。Twitter工程师们使用的缓存工具,是开源项目Varnish [18]。

  比较有趣的事情是,通常把Varnish部署在Web Server之外,面向Internet的位置。这样,当用户访问网站时,实际上先访问Varnish,读取所需内容。只有在Varnish没有缓存相应内容时,用户请求才被转发到Web Server上去。而Twitter的部署,却是把Varnish放在Apache Web Server内侧[19]。原因是Twitter的工程师们觉得Varnish的操作比较复杂,为了降低Varnish崩溃造成整个网站瘫痪的可能性,他们便采取了这种古怪而且保守的部署方式。

  Apache Web Server的主要任务,是解析HTTP,以及分发任务。不同的Mongrel Rails Server负责不同的任务,但是绝大多数Mongrel Rails Server,都要与Vector Cache和Row Cache联系,读取数据。Rails Server如何与MemCached联系呢?Twitter工程师们自行开发了一个Rails插件(Gem),称为CacheMoney。

  虽然Twitter没有公开Varnish的命中率是多少,但是[17]声称,使用了Varnish以后,导致整个Twitter.com网站的负载下降了50%,参见Figure 3.
 

 

   【4】抗洪需要隔离

  如果说如何巧用Cache是Twitter的一大看点,那么另一大看点是它的消息队列(Message Queue)。为什么要使用消息队列?[14]的解释是“隔离用户请求与相关操作,以便烫平流量高峰 (Move operations out of the synchronous request cycle, amortize load over time)”。

  为了理解这段话的意思,不妨来看一个实例。2009年1月20日星期二,美国总统Barack Obama就职并发表演说。作为美国历史上第一位黑人总统,Obama的就职典礼引起强烈反响,导致Twitter流量猛增,如Figure 4 所示。

 


    其中洪峰时刻,Twitter网站每秒钟收到350条新短信,这个流量洪峰维持了大约5分钟。根据统计,平均每个Twitter用户被120人“追”,这就 是说,这350条短信,平均每条都要发送120次 [16]。这意味着,在这5分钟的洪峰时刻,Twitter网站每秒钟需要发送350 x 120 = 42,000条短信。

  面对洪峰,如何才能保证网站不崩溃?办法是迅速接纳,但是推迟服务。打个比方,在晚餐高峰时段,餐馆常常客满。对于新来的顾客,餐馆服务员不是拒之门外,而是让这些顾客在休息厅等待。这就是[14] 所说的 “隔离用户请求与相关操作,以便烫平流量高峰”。

  如何实施隔离呢?当一位用户访问Twitter网站时,接待他的是Apache Web Server。Apache做的事情非常简单,它把用户的请求解析以后,转发给Mongrel Rails Sever,由Mongrel负责实际的处理。而Apache腾出手来,迎接下一位用户。这样就避免了在洪峰期间,用户连接不上Twitter网站的尴尬局面。

  虽然Apache的工作简单,但是并不意味着Apache可以接待无限多的用户。原因是Apache解析完用户请求,并且转发给 Mongrel Server以后,负责解析这个用户请求的进程(process),并没有立刻释放,而是进入空循环,等待Mongrel Server返回结果。这样,Apache能够同时接待的用户数量,或者更准确地说,Apache能够容纳的并发的连接数量(concurrent connections),实际上受制于Apache能够容纳的进程数量。Apache系统内部的进程机制参见Figure 5,其中每个Worker代表一个进程。

  Apache能够容纳多少个并发连接呢?[22]的实验结果是4,000个,参见Figure 6。如何才能提高Apache的并发用户容量呢?一种思路是不让连接受制于进程。不妨把连接作为一个数据结构,存放到内存中去,释放进程,直到 Mongrel Server返回结果时,再把这个数据结构重新加载到进程上去。

  事实上Yaws Web Server[24],就是这么做的[23]。所以,Yaws能够容纳80,000以上的并发连接,这并不奇怪。但是为什么Twitter用 Apache,而不用Yaws呢?或许是因为Yaws是用Erlang语言写的,而Twitter工程师对这门新语言不熟悉 (But you need in house Erlang experience [17])。

 

 

    【5】数据流与控制流

  通过让Apache进程空循环的办法,迅速接纳用户的访问,推迟服务,说白了是个缓兵之计,目的是让用户不至于收到“HTTP 503” 错误提示,“503错误” 是指 “服务不可用(Service Unavailable)”,也就是网站拒绝访问。

  大禹治水,重在疏导。真正的抗洪能力,体现在蓄洪和泄洪两个方面。蓄洪容易理解,就是建水库,要么建一个超大的水库,要么造众多小水库。泄洪包括两个方面,1. 引流,2. 渠道。

  对于Twitter系统来说,庞大的服务器集群,尤其是以MemCached为主的众多的缓存,体现了蓄洪的容量。引流的手段是Kestrel消息队列,用于传递控制指令。渠道是机器与机器之间的数据传输通道,尤其是通往MemCached的数据通道。渠道的优劣,在于是否通畅。

  Twitter的设计,与大禹的做法,形相远,实相近。Twitter系统的抗洪措施,体现在有效地控制数据流,保证在洪峰到达时,能够及时把数据疏散到多个机器上去,从而避免压力过度集中,造成整个系统的瘫痪。

  2009 年6月,Purewire公司通过爬Twitter网站,跟踪Twitter用户之间“追”与“被追”的关系,估算出Twitter用户总量在 7,000,000左右 [26]。在这7百万用户中,不包括那些既不追别人,也不被别人追的孤立用户。也不包括孤岛人群,孤岛内的用户只相互追与被追,不与外界联系。如果加上这 些孤立用户和孤岛用户群,目前Twitter的用户总数,或许不会超过1千万。

  截止2009年3月,中国移动用户数已达 4.7亿户[27]。如果中国移动的飞信[28] 和139说客[29] 也想往Twitter方向发展,那么飞信和139的抗洪能力应该设计到多少呢?简单讲,需要把Twitter系统的现有规模,至少放大47倍。所以,有人 这样评论移动互联网产业,“在中国能做到的事情,在美国一定能做到。反之,不成立”。

  但是无论如何,他山之石可以攻玉。这就是我们研究Twitter的系统架构,尤其是它的抗洪机制的目的。

 


    下面举个简单的例子,剖析一下Twitter网站内部的流程,借此考察Twitter系统有哪些机制,去实现抗洪的三要素,“水库”,“引流”和“渠道”。
  假设有两个作者,通过浏览器,在Twitter网站上发表短信。有一个读者,也通过浏览器,访问网站并阅读他们写的短信。

  1. 作者的浏览器与网站建立连接,Apache Web Server分配一个进程(Worker Process)。作者登录,Twitter查找作者的ID,并作为Cookie,记忆在HTTP邮包的头属性里。

  2. 浏览器上传作者新写的短信(Tweet),Apache收到短信后,把短信连同作者ID,转发给Mongrel Rails Server。然后Apache进程进入空循环,等待Mongrel的回复,以便更新作者主页,把新写的短信添加上去。

  3. Mongrel收到短信后,给短信分配一个ID,然后把短信ID与作者ID,缓存到Vector MemCached服务器上去。

  同时,Mongrel让Vector MemCached查找,有哪些读者“追”这位作者。如果Vector MemCached没有缓存这些信息,Vector MemCached自动去MySQL数据库查找,得到结果后,缓存起来,以备日后所需。然后,把读者IDs回复给Mongrel。

  接着,Mongrel把短信ID与短信正文,缓存到Row MemCached服务器上去。

  4. Mongrel通知Kestrel消息队列服务器,为每个作者及读者开设一个队列,队列的名称中隐含用户ID。如果Kestrel服务器中已经存在这些队列,那就延用以往的队列。

  对应于每个短信,Mongrel已经从Vector MemCached那里知道,有哪些读者追这条短信的作者。Mongrel把这条短信的ID,逐个放进每位读者的队列,以及作者本人的队列。

  5. 同一台Mongrel Server,或者另一台Mongrel Server,在处理某个Kestrel队列中的消息前,从这个队列的名称中解析出相应的用户ID,这个用户,既可能是读者,也可能是作者。

  然后Mongrel从Kestrel队列中,逐个提取消息,解析消息中包含的短信ID。并从Row MemCached缓存器中,查找对应于这个短信ID的短信正文。

  这时,Mongrel既得到了用户的ID,也得到了短信正文。接下去Mongrel就着手更新用户的主页,添加上这条短信的正文。

  6. Mongrel把更新后的作者的主页,传递给正在空循环的Apache的进程。该进程把作者主页主动传送(push)给作者的浏览器。

  如果读者的浏览器事先已经登录Twitter网站,建立连接,那么Apache给该读者也分配了一个进程,该进程也处于空循环状态。Mongrel把更新后的读者的主页,传递给相应进程,该进程把读者主页主动传递给读者的浏览器。

  咋一看,流程似乎不复杂。“水库”,“引流”和“渠道”,这抗洪三要素体现在哪里呢?盛名之下的Twitter,妙处何在?值得细究的看点很多。

  【6】流量洪峰与云计算

  上一篇历数了一则短信从发表到被阅读,Twitter业务逻辑所经历的6个步骤。表面上看似乎很乏味,但是细细咀嚼,把每个步骤展开来说,都有一段故事。

  美国年度橄榄球决赛,绰号超级碗(Super Bowl)。Super Bowl在美国的收视率,相当于中国的央视春节晚会。2008年2月3日,星期天,该年度Super Bowl如期举行。纽约巨人队(Giants),对阵波士顿爱国者队(Patriots)。这是两支实力相当的球队,决赛结果难以预料。比赛吸引了近一亿美国人观看电视实况转播。

  对于Twitter来说,可以预料的是,比赛进行过程中,Twitter流量必然大涨。比赛越激烈,流量越高涨。Twitter无法预料的是,流量究竟会涨到多少,尤其是洪峰时段,流量会达到多少。

  根据[31]的统计,在Super Bowl比赛进行中,每分钟的流量与当日平均流量相比,平均高出40%。在比赛最激烈时,更高达150%以上。与一周前,2008年1月27日,一个平静的星期天的同一时段相比,流量的波动从平均10%,上涨到40%,最高波动从35%,上涨到150%以上。

 


   由此可见,Twitter流量的波动十分可观。对于Twitter公司来说,如果预先购置足够的设备,以承受流量的变化,尤其是重大事件导致的洪峰流量,那么这些设备在大部分时间处于闲置状态,非常不经济。但是如果缺乏足够的设备,那么面对重大事件,Twitter系统有可能崩溃,造成的后果是用户流失。

  怎么办?办法是变买为租。Twitter公司自己购置的设备,其规模以应付无重大事件时的流量压力为限。同时租赁云计算平台公司的设备,以应付重大事件来临时的洪峰流量。租赁云计算的好处是,计算资源实时分配,需求高的时候,自动分配更多计算资源。

  Twitter公司在2008年以前,一直租赁Joyent公司的云计算平台。在2008年2月3日的Super Bowl即将来临之际,Joyent答应Twitter,在比赛期间免费提供额外的计算资源,以应付洪峰流量[32]。但是诡异的是,离大赛只剩下不到4天,Twitter公司突然于1月30日晚10时,停止使用Joyent的云计算平台,转而投奔Netcraft [33,34]。

  Twitter弃Joyent,投Netcraft,其背后的原因是商务纠葛,还是担心Joyent的服务不可靠,至今仍然是个谜。

  变买为租,应对洪峰,这是一个不错的思路。但是租来的计算资源怎么用,又是一个大问题。查看一下[35],不难发现Twitter把租赁来的计算资源,大部分用于增加Apache Web Server,而Apache是Twitter整个系统的最前沿的环节。

  为什么Twitter很少把租赁来的计算资源,分配给Mongrel Rails Server,MemCached Servers,Varnish HTTP Accelerators等等其它环节?在回答这个问题以前,我们先复习一下前一章“数据流与控制流”的末尾,Twitter从写到读的6个步骤。

  这6个步骤的前2步说到,每个访问Twitter网站的浏览器,都与网站保持长连接。目的是一旦有人发表新的短信,Twitter网站在500ms以内,把新短信push给他的读者。问题是在没有更新的时候,每个长连接占用一个Apache的进程,而这个进程处于空循环。所以,绝大多数Apache进程,在绝大多数时间里,处于空循环,因此占用了大量资源。

  事实上,通过Apache Web Servers的流量,虽然只占Twitter总流量的10%-20%,但是Apache却占用了Twitter整个服务器集群的50%的资源[16]。所以,从旁观者角度来看,Twitter将来势必罢黜Apache。但是目前,当Twitter分配计算资源时,迫不得已,只能优先保证Apache的需求。

  迫不得已只是一方面的原因,另一方面,也表明Twitter的工程师们,对其系统中的其它环节,太有信心了。

  在第四章“抗洪需要隔离”中,我们曾经打过一个比方,“在晚餐高峰时段,餐馆常常客满。对于新来的顾客,餐馆服务员不是拒之门外,而是让这些顾客在休息厅等待”。对于Twitter系统来说,Apache充当的角色就是休息厅。只要休息厅足够大,就能暂时稳住用户,换句行话讲,就是不让用户收到HTTP-503的错误提示。

  稳住用户以后,接下去的工作是高效率地提供服务。高效率的服务,体现在Twitter业务流程6个步骤中的后4步。为什么Twitter对这4步这么有信心?

  【7】作为一种进步的不彻底

  不彻底的工作方式,对于架构设计是一种进步。

  当一个来自浏览器的用户请求到达Twitter后台系统的时候,第一个迎接它的,是Apache Web Server。第二个出场的,是Mongrel Rails Server。Mongrel既负责处理上传的请求,也负责处理下载的请求。Mongrel处理上传和下载的业务逻辑非常简洁,但是简洁的表象之下,却蕴含着反常规的设计。这种反常规的设计,当然不是疏忽的结果,事实上,这正是Twitter架构中,最值得注意的亮点。

 


   所谓上传,是指用户写了一个新短信,上传给Twitter以便发表。而下载,是指Twitter更新读者的主页,添加最新发表的短信。Twitter下载的方式,不是读者主动发出请求的pull的方式,而是Twitter服务器主动把新内容push给读者的方式。先看上传,Mongrel处理上传的逻辑很简洁,分两步。

  1. 当Mongrel收到新短信后,分配一个新的短信ID。然后把新短信的ID,连同作者ID,缓存进Vector MemCached服务器。接着,把短信ID以及正文,缓存进Row MemCached服务器。这两个缓存的内容,由Vector MemCached与Row MemCached在适当的时候,自动存放进MySQL数据库中去。

  2. Mongrel在Kestrel消息队列服务器中,寻找每一个读者及作者的消息队列,如果没有,就创建新的队列。接着,Mongrel把新短信的ID,逐个放进“追”这位作者的所有在线读者的队列,以及作者本人的队列。

  品味一下这两个步骤,感觉是Mongrel的工作不彻底。一,把短信及其相关IDs,缓存进Vector MemCached和Row Cached就万事大吉,而不直接负责把这些内容存入MySQL数据库。二,把短信ID扔进Kestrel消息队列,就宣告上传任务结束。Mongrel 没有用任何方式去通知作者,他的短信已经被上传。也不管读者是否能读到新发表的短信。

  为什么Twitter采取了这种反常规的不彻底的工作方式?回答这个问题以前,不妨先看一看Mongrel处理下载的逻辑。把上传与下载两段逻辑联系起来,对比一下,有助于理解。Mongrel下载的逻辑也很简单,也分两步。

  1. 分别从作者和读者的Kestrel消息队列中,获得新短信的ID。

  2. 从Row MemCached缓存器那里获得短信正文。以及从Page MemCached那里获得读者以及作者的主页,更新这些主页,也就是添加上新的短信的正文。然后通过Apache,push给读者和作者。

  对照Mongrel处理上传和下载的两段逻辑,不难发现每段逻辑都“不彻底”,合在一起才形成一个完整的流程。所谓不彻底的工作方式,反映了 Twitter架构设计的两个“分”的理念。一,把一个完整的业务流程,分割成几段相对独立的工作,每一个工作由同一台机器中不同的进程负责,甚至由不同的机器负责。二,把多个机器之间的协作,细化为数据与控制指令的传递,强调数据流与控制流的分离。

  分割业务流程的做法,并不是Twitter的首创。事实上,三段论的架构,宗旨也是分割流程。Web Server负责HTTP的解析,Application Server负责业务逻辑,Database负责数据存储。遵从这一宗旨,Application Server的业务逻辑也可以进一步分割。

  1996年,发明TCL语言的前伯克利大学教授John Ousterhout,在Usenix大会上做了一个主题演讲,题目是“为什么在多数情况下,多线程是一个糟糕的设计[36]”。2003年,同为伯克利大学教授的Eric Brewer及其学生们,发表了一篇题为“为什么对于高并发服务器来说,事件驱动是一个糟糕的设计[37]”。这两个伯克利大学的同事,同室操戈,他们在争论什么?

  所谓多线程,简单讲就是由一根线程,从头到尾地负责一个完整的业务流程。打个比方,就像修车行的师傅每个人负责修理一辆车。而所谓事件驱动,指的是把一个完整的业务流程,分割成几个独立工作,每个工作由一个或者几个线程负责。打个比方,就像汽车制造厂里的流水线,有多个工位组成,每个工位由一位或者几位工人负责。

  很显然,Twitter的做法,属于事件驱动一派。事件驱动的好处在于动态调用资源。当某一个工作的负担繁重,成为整个流程中的瓶颈的时候,事件驱动的架构可以很方便地调集更多资源,来化解压力。对于单个机器而言,多线程和事件驱动的两类设计,在性能方面的差异,并不是非常明显。但是对于分布式系统而言,事件驱动的优势发挥得更为淋漓尽致。

  Twitter把业务流程做了两次分割。一,分离了Mongrel与MySQL数据库,Mongrel不直接插手MySQL数据库的操作,而是委托MemCached全权负责。二,分离了上传和下载两段逻辑,两段逻辑之间通过Kestrel队列来传递控制指令。

  在John Ousterhout和Eric Brewer两位教授的争论中,并没有明确提出数据流与控制流分离的问题。所谓事件,既包括控制信号,也包括数据本身。考虑到通常数据的尺寸大,传输成本高,而控制信号的尺寸小,传输简便。把数据流与控制流分离,可以进一步提高系统效率。

  在Twitter系统中,Kestrel消息队列专门用来传输控制信号,所谓控制信号,实际上就是IDs。而数据是短信正文,存放在Row MemCached中。谁去处理这则短信正文,由Kestrel去通知。

  Twitter完成整个业务流程的平均时间是500ms,甚至能够提高到200-300ms,说明在Twitter分布式系统中,事件驱动的设计是成功。

  Kestrel消息队列,是Twitter自行开发的。消息队列的开源实现很多,Twitter为什么不用现成的免费工具,而去费神自己研发呢?

    【8】 得过不且过

  北京西直门立交桥的设计,经常遭人诟病。客观上讲,对于一座立交桥而言,能够四通八达,就算得上基本完成任务了。大家诟病的原因,主要是因为行进路线太复杂。

  当然,站在设计者角度讲,他们需要综合考虑来自各方面的制约。但是考虑到世界上立交桥比比皆是,各有各的难处,然而像西直门立交桥这样让人迷惑的,还真是少见。所以,对于西直门立交桥的设计者而言,困难是客观存在的,但是改进的空间总还是有的。


 

 


    大型网站的架构设计也一样,沿用传统的设计,省心又省力,但是代价是网站的性能。网站的性能不好,用户的体验也不好。Twitter这样的大型网站之所以能够一飞冲天,不仅功能的设计迎合了时代的需要,同时,技术上精益求精也是成功的必要保障。

  例如,从Mongrel到MemCached之间,需要一个数据传输通道。或者严格地说,需要一个client library communicating to the memcached server。Twitter的工程师们,先用Ruby实现了一个通道。后来又用C实现了一个更快的通道。随后,不断地改进细节,不断地提升数据传输的效率。这一系列的改进,使Twitter的运行速度,从原先不设缓存时,每秒钟处理3.23个请求,到现在每秒处理139.03个请求,参见Figure 11。这个数据通道,现在定名为libmemcached,是开源项目 [38]。

 


   又例如,Twitter系统中用消息队列来传递控制信号。这些控制信号,从插入队列,到被删除,生命周期很短。短暂的生命周期,意味着消息队列的垃圾回收(Garbage Collection)的效率,会严重影响整个系统的效率。因此,改进垃圾回收的机制,不断提高效率,成为不可避免的问题。Twitter使用的消息队列,原先不是Kestrel,而是用Ruby编写的一个简单的队列工具。但是如果继续沿用Ruby这种语言,性能优化的空间不大。Ruby的优点是集成了很多功能,从而大大减少了开发过程中编写程序的工作量。但是优点也同时是缺点,集成的功能太多,拖累也就多,牵一发而动全身,造成优化困难。

  Twitter工程师戏言,”Ruby抗拒优化”,(“Ruby is optimization resistant”, by Evan Weaver [14])。几经尝试以后,Twitter的工程师们最终放弃了Ruby语言,改用Scala语言,自行实现了一个队列,命名为Kestrel [39]。

  改换语言的主要动机是,Scala运行在JVM之上,因此优化Garbage Collection性能的手段丰富。Figure 12. 显示了使用Kestrel以后,垃圾回收的滞后,在平时只有2ms,最高不超过4ms。高峰时段,平均滞后5ms,最高不超过35ms。

 


    RubyOnRails逐渐淡出Twitter,看来这是大势所趋。最后一步,也是最高潮的一步,可能是替换Mongrel。事实上,Twitter所谓“API Server”,很可能是他们替换Mongrel的前奏。

  Twitter的Evan Weaver说,“API Server”的运行效率,比Apache+Mongrel组合的速度快4倍。所谓Apache+Mongrel组合,是RubyOnRails的一种实现方式。Apache+Mongrel组合,每秒能够处理139个请求,参见Figure 11,而“API Server” 每秒钟能够处理大约550个请求 [16]。换句话说,使用Apache+Mongrel组合,优点是降低了工程师们写程序的负担,但是代价是系统性能降低了4倍,换句话说,用户平均等待的时间延长了4倍。

    这个系列讨论了Twitter架构设计,尤其是cache的应用,数据流与控制流的组织等等独特之处。把它们与抗洪抢险中,蓄洪,引流,渠道三种手段相对比,便于加深理解。同时参考实际运行的结果,验证这样的设计是否能够应付实际运行中遇到的压力。

  解剖一个现实网站的架构,有一些难度。主要体现在相关资料散落各处,而且各个资料的视点不同,覆盖面也不全。更严重的问题是,这些资料不是学术论文,质量良莠不齐,而且一些文章或多或少地存在缺失,甚至错误。

  单纯把这些资料罗列在一起,并不能满足全景式的解剖的需要。整理这些资料的过程,很像是侦探办案。福尔摩斯探案的方法,是证据加推理。

  1. 如果观察到证据O1,而造成O1出现的原因,有可能是R1,也有可能是R2或者R3。究竟哪一个原因,才是真正的原因,需要进一步收集更多的证据,例如O2,O3。如果造成O2 出现的可能的原因是R2和R4,造成O3 出现的可能原因是R3和R5。把所有证据O1 O2 O3,综合起来考虑,可能性最大的原因必然是(R1,R2,R3), (R2,R4), (R3,R5) 的交集,也就是R2。这是反绎推理的过程。

  2. 如果反绎推理仍然不能确定什么是最可能的原因,那么假定R2是真实的原因,采用演绎推理,R2必然导致O4证据的出现。接下去要做的事情是,确认O4是否真的出现,或者寻找O4肯定不会出现的证据。以此循环。

  解剖网络架构的方法,与探案很相似。只读一篇资料是不够的,需要多多收集资料,交叉印证。不仅交叉印证,而且引申印证,如果某一环节A是这样设计的,那么关联环节B必然相应地那样设计。如果一时难以确定A到底是如何设计的,不妨先确定B是如何设计的。反推回来,就知道A应该如何设计了。

  解剖网站架构,不仅有益,而且有趣。

分享到:
评论
1 楼 DSQiu 2013-05-29  
看到你的,我觉得自己写的不堪入目,大神再次膜拜了

相关推荐

    中文微博:具有Twitter缺乏的大脑与良心.docx

    本文将深入探讨中文微博相较于其鼻祖Twitter所具备的独特之处,并分析这些差异如何塑造了中文微博在传播信息、表达观点及促进社会进步等方面的作用。 #### 二、产品设计与信息承载能力 **1. 字符限制与信息密度** -...

    新浪微博与Twitter :你必须知道的5个事实.docx

    《新浪微博与Twitter:你必须了解的5个关键差异》 在当今全球社交媒体的舞台上,新浪微博和Twitter无疑是最具影响力的两大平台。尽管它们在功能和性质上有许多相似之处,但两者之间存在着显著的区别,这些差异使得...

    myweibo_spider.zip

    twitter_id:微博ID content:微博内容 twitter_time:发布微博时间 transmit_num:微博被转发的数量 like_num:微博被点赞的数量 comment_num:微博被评论的数量 用户信息: u_id:用户ID u_name:用户昵称 ...

    Twitter系统结构分析

    ### Twitter系统结构分析 #### 一、引言 Twitter作为全球知名的社交平台之一,自2006年推出以来便迅速走红。其简洁明了的界面和独特的微博客功能吸引了大量的用户。本文将深入剖析Twitter的核心技术架构,探讨它是...

    《微博是这样炼成的:从聊天室到Twitter的技术实现》随书项目源码

    《微博是这样炼成的:从聊天室到Twitter的技术实现》这本书主要探讨了社交媒体平台从早期的聊天室到现代的Twitter式服务的发展历程,并详细解析了背后的技术实现。随书项目源码则提供了实践这些技术的实例,帮助读者...

    php微博系统

    2. **e-say微博系统需求分析书.doc**:文档阐述了微博系统的需求,包括功能需求(如用户注册、登录、发微博、浏览他人微博等)和非功能需求(如安全性、可用性、可扩展性等)。它是项目开发的起点,明确了系统应具备...

    微博系统 aspx C#

    【描述】"微博系统 微博系统 aspx C#微博系统 aspx C#微博系统 aspx C#微博系统 aspx C#" 描述中的重复表明该项目的核心是关于开发一个基于ASP.NET的微博系统,且主要编程语言为C#。C#是一种现代的、面向对象的编程...

    新浪微博.Net SDK

    WeiboSharp 是一个修改自TweetSharp(Twitter的API封装)的新浪微博API的封装。使用T4模板来使得添加新的接口更加容易。它也能作为一个如何使用Hammock封装特定API的例子。 新浪微博将只采用OAuth认证,请参见:...

    ASP源码—搜酷狗微博系统.zip

    "搜酷狗微博系统"是一个基于ASP技术构建的社交媒体平台,可能类似于Twitter或微博,让用户可以发布短消息(称为“微博”),关注他人,分享信息,并进行互动交流。这个系统的核心功能可能包括: 1. 用户注册与登录...

    中国的SNS路径?(之二)新浪微博不是Twitter.docx

    本文将深入探讨新浪微博与Twitter之间的区别,并重点分析新浪微博如何通过融合媒体特性实现自身价值的提升。 #### 二、Twitter的核心优势 1. **简约与聚焦**:Twitter的核心设计理念在于“简约”。它专注于文字...

    PHP微博系统(俏微博V1.0)

    俏微博系统是由俏微博科技出品,由行业顶尖高手亲自操刀, 历经2010,2011两年时间打造最智能化的twitter系统俏微博.0,资深产品设计提供市场需求与用户体验需求,迎合市场需要,并由数位高级程序人员夜以继日的创造着...

    nostr:Twitter真正抗审查的替代方案,有可能奏效

    nostr-继电器传输的音符和其他内容最简单的开放协议,能够一劳永逸地创建具有抗审查性的全球“社交”网络。...这是必需的,因为其他解决方案已损坏:Twitter的问题Twitter有广告; Twitter使用奇异的技

    评论:中国微博媒体属性强于Twitter.docx

    评论:中国微博媒体属性强于Twitter.docx

    微博的JS开发包node-weibo.zip

    支持的微博系统包括: twitter: http://twitter.com/ facebook: http://facebook.com/ fanfou: http://fanfou.com/ digu: http://digu.com/ zuosa: http://zuosa.com/ weibo: ...

    开源php微博系统sharetronix2.0

    Sharetronix是一款基于PHP语言开发的开源微博系统,专为构建类似Twitter或新浪微博的社交网络平台而设计。它提供了丰富的功能和高度可定制性,使开发者能够快速搭建属于自己的微型博客服务。Sharetronix 2.0作为最新...

    未解决如何使用MATLAB发一条微博-twitter.rar

    未解决如何使用MATLAB发一条微博-twitter.rar 本帖最后由 jinkeluck 于 2013-4-1 09:33 编辑 看到论坛上有人用MATLAB发邮件,我突发奇想,能不能用MATLAB发送一条新浪微博呢。马上Google之,未果,却发现国外...

    微博和知乎中的 feed 流是如何实现的?1

    【标题】:“微博和知乎中的 feed 流实现原理解析” 【描述】:微博和知乎的feed流是社交媒体的核心功能,它能将用户关注的人或话题的动态实时展示出来。实现这一功能涉及到多种技术和策略,包括推送(Push)与拉取...

Global site tag (gtag.js) - Google Analytics