`

Java nio

 
阅读更多
本文转载自http://www.iteye.com/topic/834447

1. 基本概念
    IO 是主存和外部设备 ( 硬盘、终端和网络等 ) 拷贝数据的过程。 IO 是操作系统的底层功能实现,底层通过 I/O 指令进行完成。
    所有语言运行时系统提供执行 I/O 较高级别的工具。 (c 的 printf scanf,java 的面向对象封装 )
2.Java标准io回顾
    Java 标准 IO 类库是 io 面向对象的一种抽象。基于本地方法的底层实现,我们无须关注底层实现。 InputStream\OutputStream( 字节流 ) :一次传送一个字节。 Reader\Writer( 字符流 ) :一次一个字符。
3.nio 简介
    nio 是 java New IO 的简称,在 jdk1.4 里提供的新 api 。 Sun 官方标榜的特性如下:
–为所有的原始类型提供 (Buffer) 缓存支持。
–字符集编码解码解决方案。
–Channel :一个新的原始 I/O 抽象。
–支持锁和内存映射文件的文件访问接口。
–提供多路 (non-bloking) 非阻塞式的高伸缩性网络 I/O 。
4.Buffer&Chanel
    Channel 和 buffer 是 NIO 是两个最基本的数据类型抽象。
Buffer:
–是一块连续的内存块。
–是 NIO 数据读或写的中转地。
Channel:
–数据的源头或者数据的目的地
–用于向 buffer 提供数据或者读取 buffer 数据 ,buffer 对象的唯一接口。
–异步 I/O 支持
    下面代码使用nio实现文件的拷贝
package com.ajita;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;

public class CopyFile {
	public static void main(String[] args) throws Exception {
		String infile = "C:\\log.txt";
		String outfile = "D:\\log.txt";
		// 获取源文件和目标文件的输入输出流
		FileInputStream fin = new FileInputStream(infile);
		FileOutputStream fout = new FileOutputStream(outfile);
		// 获取输入输出通道
		FileChannel fcin = fin.getChannel();
		FileChannel fcout = fout.getChannel();
		// 创建缓冲区
		ByteBuffer buffer = ByteBuffer.allocate(1024);
		while (true) {
			// clear方法重设缓冲区,使它可以接受读入的数据
			buffer.clear();
			// 从输入通道中将数据读到缓冲区
			int r = fcin.read(buffer);
			// read方法返回读取的字节数,可能为零,如果该通道已到达流的末尾,则返回-1
			if (r == -1) {
				break;
			}
			// flip方法让缓冲区可以将新读入的数据写入另一个通道
			buffer.flip();
			// 从输出通道中将数据写入缓冲区
			fcout.write(buffer);
		}
	}
}


    一个 buffer 主要由 position,limit,capacity 三个变量来控制读写的过程。此三个变量的含义见如下表格:
参数写模式读模式
position当前写入的单位数据数量。当前读取的单位数据位置。
limit代表最多能写多少单位数据和容量是一样的。代表最多能读多少单位数据,和之前写入的单位数据量一致。
capacitybuffer 容量buffer 容量


Buffer 常见方法:
flip(): 写模式转换成读模式
rewind() :将 position 重置为 0 ,一般用于重复读。
clear() :清空 buffer ,准备再次被写入 (position 变成 0 , limit 变成 capacity) 。
compact(): 将未读取的数据拷贝到 buffer 的头部位。
mark() 、 reset():mark 可以标记一个位置, reset 可以重置到该位置。

    Buffer 常见类型: ByteBuffer 、 MappedByteBuffer 、 CharBuffer 、 DoubleBuffer 、 FloatBuffer 、 IntBuffer 、 LongBuffer 、 ShortBuffer 。

    channel 常见类型 :FileChannel 、 DatagramChannel(UDP) 、 SocketChannel(TCP) 、 ServerSocketChannel(TCP)
5.nio.charset
    字符编码解码 : 字节码本身只是一些数字,放到正确的上下文中被正确被解析。向 ByteBuffer 中存放数据时需要考虑字符集的编码方式,读取展示 ByteBuffer 数据时涉及对字符集解码。
    Java.nio.charset 提供了编码解码一套解决方案。
以我们最常见的 http 请求为例,在请求的时候必须对请求进行正确的编码。在得到响应时必须对响应进行正确的解码。

以下代码向 baidu 发一次请求,并获取结果进行显示。例子演示到了 charset 的使用。
package com.ajita;

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SocketChannel;
import java.nio.charset.Charset;

public class BaiduReader {
	private Charset charset = Charset.forName("GBK");// 创建GBK字符集
	private SocketChannel channel;

	public void readHTMLContent() {
		try {
			InetSocketAddress socketAddress = new InetSocketAddress(
					"www.baidu.com", 80);
			// step1:打开连接
			channel = SocketChannel.open(socketAddress);
			// step2:发送请求,使用GBK编码
			channel.write(charset.encode("GET " + "/ HTTP/1.1" + "\r\n\r\n"));
			// step3:读取数据
			ByteBuffer buffer = ByteBuffer.allocate(1024);// 创建1024字节的缓冲
			while (channel.read(buffer) != -1) {
				buffer.flip();// flip方法在读缓冲区字节操作之前调用。
				System.out.println(charset.decode(buffer));
				// 使用Charset.decode方法将字节转换为字符串
				buffer.clear();// 清空缓冲
			}
		} catch (IOException e) {
			System.err.println(e.toString());
		} finally {
			if (channel != null) {
				try {
					channel.close();
				} catch (IOException e) {
				}
			}
		}
	}

	public static void main(String[] args) {
		new BaiduReader().readHTMLContent();
	}
}


6.非阻塞 IO
非阻塞的原理
    把整个过程切换成小的任务,通过任务间协作完成。
    由一个专门的线程来处理所有的 IO 事件,并负责分发。
    事件驱动机制:事件到的时候触发,而不是同步的去监视事件。
    线程通讯:线程之间通过 wait,notify 等方式通讯。保证每次上下文切换都是有意义的。减少无谓的进程切换。

异步 IO 核心 API
Selector
    异步 IO 的核心类,它能检测一个或多个通道 (channel) 上的事件,并将事件分发出去。
    使用一个 select 线程就能监听多个通道上的事件,并基于事件驱动触发相应的响应。而不需要为每个 channel 去分配一个线程。
SelectionKey
    包含了事件的状态信息和时间对应的通道的绑定。
例子 单线程实现监听两个端口。 ( 见 nio.asyn 包下面的例子。)

package com.ajita.nio;

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.nio.channels.spi.SelectorProvider;
import java.util.Iterator;

public class OperationServer implements Runnable {
	private int port1 = 8090;
	private int port2 = 9090;
	private Selector selector;
	private ServerSocketChannel serverChannel1;
	private ByteBuffer readBuffer = ByteBuffer.allocate(8192);
	private ServerSocketChannel serverChannel2;
	private SocketChannel socketChannel1;
	private SocketChannel socketChannel2;
	private AddProcessor client1Processor = new AddProcessor();
	private MultiProcessor client2Processor = new MultiProcessor();

	public OperationServer() {
		initSelector();
	}

	public void run() {
		while (true) {
			try {
				this.selector.select();
				Iterator<SelectionKey> selectedKeys = this.selector.selectedKeys().iterator();
				while (selectedKeys.hasNext()) {
					SelectionKey key = (SelectionKey) selectedKeys.next();
					selectedKeys.remove();

					if (!key.isValid()) {
						continue;
					}

					if (key.isAcceptable()) {
						this.accept(key);
					} else if (key.isReadable()) {
						this.read(key);
					} else if (key.isWritable()) {
						this.write(key);
					}
				}
			} catch (IOException e) {
				e.printStackTrace();
			}
			try {
				Thread.sleep(100);
			} catch (InterruptedException e) {
				// TODO Auto-generated catch block
				e.printStackTrace();
			}
		}
	}

	public void accept(SelectionKey key) throws IOException {
		ServerSocketChannel serverSocketChannel = (ServerSocketChannel) key
				.channel();
		if (serverSocketChannel.equals(serverChannel1)) {
			socketChannel1 = serverSocketChannel.accept();
			socketChannel1.configureBlocking(false);
			socketChannel1.register(this.selector, SelectionKey.OP_READ);
		} else {
			socketChannel2 = serverSocketChannel.accept();
			socketChannel2.configureBlocking(false);
			socketChannel2.register(this.selector, SelectionKey.OP_READ);
		}

	}

	public void read(SelectionKey key) throws IOException {
		SocketChannel socketChannel = (SocketChannel) key.channel();

		this.readBuffer.clear();

		// Attempt to read off the channel
		int numRead;
		try {
			numRead = socketChannel.read(this.readBuffer);
		} catch (IOException e) {
			// The remote forcibly closed the connection, cancel
			// the selection key and close the channel.
			key.cancel();
			socketChannel.close();
			return;
		}

		if (numRead == -1) {
			// Remote entity shut the socket down cleanly. Do the
			// same from our end and cancel the channel.
			key.channel().close();
			key.cancel();
			return;
		}
		String input = new String(readBuffer.array()).trim();
		if (socketChannel.equals(socketChannel1)) {
			client1Processor.process(input);
		} else {
			client2Processor.process(input);
		}
	}

	public void write(SelectionKey key) {

	}

	/**
	 * 注册事件到selector;
	 */
	public void initSelector() {
		try {
			selector = SelectorProvider.provider().openSelector();
			this.serverChannel1 = ServerSocketChannel.open();
			serverChannel1.configureBlocking(false);
			InetSocketAddress isa = new InetSocketAddress("localhost",
					this.port1);
			serverChannel1.socket().bind(isa);
			serverChannel1.register(selector, SelectionKey.OP_ACCEPT);

			this.serverChannel2 = ServerSocketChannel.open();
			serverChannel2.configureBlocking(false);
			InetSocketAddress isa2 = new InetSocketAddress("localhost",
					this.port2);
			serverChannel2.socket().bind(isa2);
			serverChannel2.register(selector, SelectionKey.OP_ACCEPT);
		} catch (IOException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		}
	}

	public static void main(String[] args) {
		OperationServer server = new OperationServer();
		Thread t = new Thread(server);
		t.start();
	}
}

package com.ajita.nio;

public class AddProcessor {
	public void process(String input) {
		if (input != null) {
			String[] elements = input.split(",");
			if (elements.length != 2) {
				System.out
						.println("sorry, input expression error! right format:A+B");
				return;
			}
			double A = Double.parseDouble(elements[0]);
			double B = Double.parseDouble(elements[1]);

			System.out.println(A + "+" + B + "=" + (A + B));
		} else {
			System.out.println("no input");
		}

	}
}

package com.ajita.nio;

public class MultiProcessor {
	public void process(String input) {
		if (input != null) {
			String[] elements = input.split(",");
			if (elements.length != 2) {
				System.out
						.println("sorry, input expression error! right format:A*B");
				return;
			}
			double A = Double.parseDouble(elements[0]);
			double B = Double.parseDouble(elements[1]);

			System.out.println(A + "*" + B + "=" + (A * B));
		} else {
			System.out.println("no input");
		}

	}
}

package com.ajita.nio;

import java.io.IOException;
import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SocketChannel;
import java.nio.charset.Charset;

public class OperationClient {
	// Charset and decoder for US-ASCII
	private static Charset charset = Charset.forName("US-ASCII");

	// Direct byte buffer for reading
	private static ByteBuffer dbuf = ByteBuffer.allocateDirect(1024);

	// Ask the given host what time it is
	//
	private static void query(String host, int port) throws IOException {
		byte inBuffer[] = new byte[100];
		InetSocketAddress isa = new InetSocketAddress(
				InetAddress.getByName(host), port);
		SocketChannel sc = null;
		while (true) {
			try {
				System.in.read(inBuffer);
				sc = SocketChannel.open();
				sc.connect(isa);
				dbuf.clear();
				dbuf.put(inBuffer);
				dbuf.flip();
				sc.write(dbuf);
				dbuf.clear();

			} finally {
				// Make sure we close the channel (and hence the socket)
				if (sc != null)
					sc.close();
			}
		}
	}

	public static void main(String[] args) throws IOException {
		query("localhost", 8090);// A+B
		// query("localhost", 9090);//A*B
	}
}

分享到:
评论

相关推荐

    Delphi 12.3控件之TraeSetup-stable-1.0.12120.exe

    Delphi 12.3控件之TraeSetup-stable-1.0.12120.exe

    基于GPRS,GPS的电动汽车远程监控系统的设计与实现.pdf

    基于GPRS,GPS的电动汽车远程监控系统的设计与实现.pdf

    基于MATLAB/Simulink 2018a的单机无穷大系统暂态稳定性仿真与故障分析

    内容概要:本文详细介绍了如何利用MATLAB/Simulink 2018a进行单机无穷大系统的暂态稳定性仿真。主要内容包括搭建同步发电机模型、设置无穷大系统等效电源、配置故障模块及其控制信号、优化求解器设置以及绘制和分析转速波形和摇摆曲线。文中还提供了多个实用脚本,如故障类型切换、摇摆曲线计算和极限切除角的求解方法。此外,作者分享了一些实践经验,如避免常见错误和提高仿真效率的小技巧。 适合人群:从事电力系统研究和仿真的工程师和技术人员,尤其是对MATLAB/Simulink有一定基础的用户。 使用场景及目标:适用于需要进行电力系统暂态稳定性分析的研究项目或工程应用。主要目标是帮助用户掌握单机无穷大系统的建模和仿真方法,理解故障对系统稳定性的影响,并能够通过仿真结果评估系统的性能。 其他说明:文中提到的一些具体操作和脚本代码对于初学者来说可能会有一定的难度,建议结合官方文档或其他教程一起学习。同时,部分技巧和经验来自于作者的实际操作,具有一定的实用性。

    【KUKA 机器人资料】:KUKA机器人剑指未来——访库卡自动化设备(上海)有限公司销售部经理邹涛.pdf

    KUKA机器人相关资料

    基于DLR模型的PM10–能见度–湿度相关性 研究.pdf

    基于DLR模型的PM10–能见度–湿度相关性 研究.pdf

    MATLAB/Simulink中基于电导增量法的光伏并网系统MPPT仿真及其环境适应性分析

    内容概要:本文详细介绍了如何使用MATLAB/Simulink进行光伏并网系统的最大功率点跟踪(MPPT)仿真,重点讨论了电导增量法的应用。首先阐述了电导增量法的基本原理,接着展示了如何在Simulink中构建光伏电池模型和MPPT控制系统,包括Boost升压电路的设计和PI控制参数的设定。随后,通过仿真分析了不同光照强度和温度条件对光伏系统性能的影响,验证了电导增量法的有效性,并提出了针对特定工况的优化措施。 适合人群:从事光伏系统研究和技术开发的专业人士,尤其是那些希望通过仿真工具深入理解MPPT控制机制的人群。 使用场景及目标:适用于需要评估和优化光伏并网系统性能的研发项目,旨在提高系统在各种环境条件下的最大功率点跟踪效率。 其他说明:文中提供了详细的代码片段和仿真结果图表,帮助读者更好地理解和复现实验过程。此外,还提到了一些常见的仿真陷阱及解决方案,如变步长求解器的问题和PI参数整定技巧。

    【KUKA 机器人坐标的建立】:mo2_base_en.ppt

    KUKA机器人相关文档

    风力发电领域双馈风力发电机(DFIG)Simulink模型的构建与电流电压波形分析

    内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。

    linux之用户管理教程.md

    linux之用户管理教程.md

    三菱PLC与组态王构建3x3书架式堆垛立体库:IO分配、梯形图编程及组态画面设计

    内容概要:本文详细介绍了利用三菱PLC(特别是FX系列)和组态王软件构建3x3书架式堆垛式立体库的方法。首先阐述了IO分配的原则,明确了输入输出信号的功能,如仓位检测、堆垛机运动控制等。接着深入解析了梯形图编程的具体实现,包括基本的左右移动控制、复杂的自动寻址逻辑,以及确保安全性的限位保护措施。还展示了接线图和原理图的作用,强调了正确的电气连接方式。最后讲解了组态王的画面设计技巧,通过图形化界面实现对立体库的操作和监控。 适用人群:从事自动化仓储系统设计、安装、调试的技术人员,尤其是熟悉三菱PLC和组态王的工程师。 使用场景及目标:适用于需要提高仓库空间利用率的小型仓储环境,旨在帮助技术人员掌握从硬件选型、电路设计到软件编程的全流程技能,最终实现高效稳定的自动化仓储管理。 其他说明:文中提供了多个实用的编程技巧和注意事项,如避免常见错误、优化性能参数等,有助于减少实际应用中的故障率并提升系统的可靠性。

    基于STM32的循迹避障小车仿真20250426(带讲解视频)

    基于STM32的循迹避障小车 主控:STM32 显示:OLED 电源模块 舵机云台 超声波测距 红外循迹模块(3个,左中右) 蓝牙模块 按键(6个,模式和手动控制小车状态) TB6612驱动的双电机 功能: 该小车共有3种模式: 自动模式:根据红外循迹和超声波测距模块决定小车的状态 手动模式:根据按键的状态来决定小车的状态 蓝牙模式:根据蓝牙指令来决定小车的状态 自动模式: 自动模式下,检测距离低于5cm小车后退 未检测到任何黑线,小车停止 检测到左边或左边+中间黑线,小车左转 检测到右边或右边+中间黑线,小车右转 检测到中边或左边+中间+右边黑线,小车前进 手动模式:根据按键的状态来决定小车的状态 蓝牙模式: //需切换为蓝牙模式才能指令控制 *StatusX X取值为0-4 0:小车停止 1:小车前进 2:小车后退 3:小车左转 4:小车右转

    海西蒙古族藏族自治州乡镇边界,矢量边界,shp格式

    矢量边界,行政区域边界,精确到乡镇街道,可直接导入arcgis使用

    基于IEEE33节点的主动配电网优化:含风光储柴燃多源调度模型的经济运行研究

    内容概要:本文探讨了基于IEEE33节点的主动配电网优化方法,旨在通过合理的调度模型降低配电网的总运行成本。文中详细介绍了模型的构建,包括风光发电、储能装置、柴油发电机和燃气轮机等多种分布式电源的集成。为了实现这一目标,作者提出了具体的约束条件,如储能充放电功率限制和潮流约束,并采用了粒子群算法进行求解。通过一系列实验验证,最终得到了优化的分布式电源运行计划,显著降低了总成本并提高了系统的稳定性。 适合人群:从事电力系统优化、智能电网研究的专业人士和技术爱好者。 使用场景及目标:适用于需要优化配电网运行成本的研究机构和企业。主要目标是在满足各种约束条件下,通过合理的调度策略使配电网更加经济高效地运行。 其他说明:文章不仅提供了详细的理论推导和算法实现,还分享了许多实用的经验技巧,如储能充放电策略、粒子群算法参数选择等。此外,通过具体案例展示了不同电源之间的协同作用及其经济效益。

    【KUKA 机器人资料】:KUKA 机器人初级培训教材.pdf

    KUKA机器人相关文档

    基于MATLAB的CSP电站与ORC综合能源系统优化建模及应用

    内容概要:本文详细介绍了将光热电站(CSP)和有机朗肯循环(ORC)集成到综合能源系统中的优化建模方法。主要内容涵盖系统的目标函数设计、关键设备的约束条件(如CSP储热罐、ORC热电耦合)、以及具体实现的技术细节。文中通过MATLAB和YALMIP工具进行建模,采用CPLEX求解器解决混合整数规划问题,确保系统在经济性和环境效益方面的最优表现。此外,文章还讨论了碳排放惩罚机制、风光弃能处理等实际应用场景中的挑战及其解决方案。 适合人群:从事综合能源系统研究的专业人士,尤其是对光热发电、余热利用感兴趣的科研工作者和技术开发者。 使用场景及目标:适用于需要评估和优化包含多种能源形式(如光伏、风电、燃气锅炉等)在内的复杂能源系统的项目。目标是在满足供电供热需求的同时,最小化运行成本并减少碳排放。 其他说明:文中提供了大量具体的MATLAB代码片段作为实例,帮助读者更好地理解和复现所提出的优化模型。对于初学者而言,建议从简单的确定性模型入手,逐渐过渡到更复杂的随机规划和鲁棒优化。

    网站设计与管理作业一.ppt

    网站设计与管理作业一.ppt

    基于MATLAB的双闭环Buck电路仿真模型设计与优化

    内容概要:本文详细介绍了如何使用MATLAB搭建双闭环Buck电路的仿真模型。首先定义了主电路的关键参数,如输入电压、电感、电容等,并解释了这些参数的选择依据。接着分别对电压外环和电流内环进行了PI控制器的设计,强调了电流环响应速度需要显著高于电压环以确保系统的稳定性。文中还讨论了仿真过程中的一些关键技术细节,如PWM死区时间的设置、低通滤波器的应用以及参数调整的方法。通过对比单闭环和双闭环系统的性能,展示了双闭环方案在应对负载突变时的优势。最后分享了一些调试经验和常见问题的解决方案。 适合人群:从事电力电子、电源设计领域的工程师和技术人员,尤其是有一定MATLAB基础的读者。 使用场景及目标:适用于需要进行电源管理芯片设计验证、电源系统性能评估的研究人员和工程师。主要目标是提高电源系统的稳定性和响应速度,特别是在负载变化剧烈的情况下。 其他说明:文章不仅提供了详细的理论分析,还包括了大量的代码片段和具体的调试步骤,帮助读者更好地理解和应用所学知识。同时提醒读者注意仿真与实际情况之间的差异,鼓励在实践中不断探索和改进。

    MATLAB实现冷热电气多能互补微能源网的鲁棒优化调度模型

    内容概要:本文详细探讨了MATLAB环境下冷热电气多能互补微能源网的鲁棒优化调度模型。首先介绍了多能耦合元件(如风电、光伏、P2G、燃气轮机等)的运行特性模型,展示了如何通过MATLAB代码模拟这些元件的实际运行情况。接着阐述了电、热、冷、气四者的稳态能流模型及其相互关系,特别是热电联产过程中能流的转换和流动。然后重点讨论了考虑经济成本和碳排放最优的优化调度模型,利用MATLAB优化工具箱求解多目标优化问题,确保各能源设备在合理范围内运行并保持能流平衡。最后分享了一些实际应用中的经验和技巧,如处理风光出力预测误差、非线性约束、多能流耦合等。 适合人群:从事能源系统研究、优化调度、MATLAB编程的专业人士和技术爱好者。 使用场景及目标:适用于希望深入了解综合能源系统优化调度的研究人员和工程师。目标是掌握如何在MATLAB中构建和求解复杂的多能互补优化调度模型,提高能源利用效率,降低碳排放。 其他说明:文中提供了大量MATLAB代码片段,帮助读者更好地理解和实践所介绍的内容。此外,还提及了一些有趣的发现和挑战,如多能流耦合的复杂性、鲁棒优化的应用等。

    Simulink与Carsim联合仿真:基于PID与MPC的自适应巡航控制系统设计与实现

    内容概要:本文详细介绍了如何利用Simulink和Carsim进行联合仿真,实现基于PID(比例-积分-微分)和MPC(模型预测控制)的自适应巡航控制系统。首先阐述了Carsim参数设置的关键步骤,特别是cpar文件的配置,包括车辆基本参数、悬架系统参数和转向系统参数的设定。接着展示了Matlab S函数的编写方法,分别针对PID控制和MPC控制提供了详细的代码示例。随后讨论了Simulink中车辆动力学模型的搭建,强调了模块间的正确连接和参数设置的重要性。最后探讨了远程指导的方式,帮助解决仿真过程中可能出现的问题。 适合人群:从事汽车自动驾驶领域的研究人员和技术人员,尤其是对Simulink和Carsim有一定了解并希望深入学习联合仿真的从业者。 使用场景及目标:适用于需要验证和优化自适应巡航控制、定速巡航及紧急避撞等功能的研究和开发项目。目标是提高车辆行驶的安全性和舒适性,确保控制算法的有效性和可靠性。 其他说明:文中不仅提供了理论知识,还有大量实用的代码示例和避坑指南,有助于读者快速上手并应用于实际工作中。此外,还提到了远程调试技巧,进一步提升了仿真的成功率。

    02.第18讲一、三重积分02.mp4

    02.第18讲一、三重积分02.mp4

Global site tag (gtag.js) - Google Analytics