`

算法和数据结构

阅读更多
算法:
数据结构与算法的关系是相互依赖不可分割的。
算法的定义:算法是解决特定问题求解步骤的描述,在计算机中为指令的有限序列,并且每条指令表示一个或多个操作。
算法的特性:有穷性、确定性、可行性、输入、输出。
算法设计的要求:正确性、可读性、健壮性、高效率和低存储量需求。
算法特性与算法设计容易混,需要对比记忆。
算法的度量方法:事后统计方法(不科学、不准确)、事前分析估算方法。
在讲解如何用事前分析估算方法之前,我们先给出了函数渐近增长的定义。
算法的时间复杂度和空间复杂度
函数的渐近增长:给定两个函数f(n)和g(n),如果存在一个整数N,使得对于所有的n > N,f(n)总是比g(n)大,那么,我们说f(n)的增长渐近快于g(n)。于是我们可以得出一个结论,判断一个算法好不好,我们只通过少量的数据是不能做出准确判断的,如果我们可以对比算法的关键执行次数函数的渐近增长性,基本就可以分析出:某个算法,随着n的变大,它会越来越优于另一算法,或者越来越差于另一算法。
然后给出了算法时间复杂度的定义和推导大O阶的步骤。
推导大O阶:
用常数1取代运行时间中的所有加法常数。
在修改后的运行次数函数中,只保留最高阶项。
如果最高阶项在且不是1,则去除与这个项相乘的常数。
存得到的结果就是大O阶。
通过这个步骤,我们可以在得到算法的运行次数表达式后,很快得到它的时间复杂度,即大O阶。同时我也提醒了大家,其实推导大O阶很容易,但如何得到运行次数的表达式却是需要数学功底的。
接着我们给出了常见的时间复杂度所耗时间的大小排列: 如图

  • 大小: 19.6 KB
分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics