里面称作者是周志华,我无从考证,只是转载。个人感觉写得很不错。转载至此。
机器学习现在是一大热门,研究的人特多,越来越多的新人涌进来。
不少人其实并没有真正想过,这是不是自己喜欢搞的东西,只不过看见别人都在搞,觉着跟大伙儿走总不会吃亏吧。
问题是,真有个"大伙儿"吗?就不会是"两伙儿"、"三伙儿"?如果有"几伙儿",那到底该跟着"哪伙儿"走呢?
很多人可能没有意识到,所谓的machine learning community,现在至少包含了两个有着完全不同的文化、完全不同的价值观的群体,称为machine learning "communities"也许更合适一些。
第一个community,是把机器学习看作人工智能分支的一个群体,这群人的主体是计算机科学家。
现在的"机器学习研究者"可能很少有人读过1983年出的"Machine Learning: An Artificial
Intelligence
Approach"这本书。这本书的出版标志着机器学习成为人工智能中一个独立的领域。它其实是一部集早期机器学习研究之大成的文集,收罗了若干先贤(例
如Herbert Simon,那位把诺贝尔奖、图灵奖以及各种各样和他相关的奖几乎拿遍了的科学天才)的大作,主编是Ryszard S.
Michalski(此君已去世多年了,他可算是机器学习的奠基人之一)、Jaime G.
Carbonell(此君曾是Springer的LNAI的总编)、Tom
Mitchell(此君是CMU机器学习系首任系主任、著名教材的作者,机器学习界没人不知道他吧)。Machine
Learning杂志的创刊,正是这群人努力的结果。这本书值得一读。虽然技术手段早就日新月异了,但有一些深刻的思想现在并没有过时。各个学科领域总有
不少东西,换了新装之后又粉墨登场,现在热火朝天的transfer learning,其实就是learning by analogy的升级版。
人工智能的研究从以"推理"为重点到以"知识"为重点,再到以"学习"为重点,是有一条自然、清晰的脉络。人工智能出身的机器学习研究者,绝大部分
是把机器学习作为实现人工智能的一个途径,正如1983年的书名那样。他们关注的是人工智能中的问题,希望以机器学习为手段,但具体采用什么样的学习手
段,是基于统计的、代数的、还是逻辑的、几何的,他们并不care。
这群人可能对统计学习目前dominating的地位未必满意。靠统计学习是不可能解决人工智能中大部分问题的,如果统计学习压制了对其他手段的研
究,可能不是好事。这群人往往也不care在文章里show自己的数学水平,甚至可能是以简化表达自己的思想为荣。人工智能问题不是数学问题,甚至未必是
依靠数学能够解决的问题。人工智能中许多事情的难处,往往在于我们不知道困难的本质在哪里,不知道"问题"在哪里。一旦"问题"清楚了,解决起来可能并不
困难。
第二个community,是把机器学习看作"应用统计学"的一个群体,这群人的主体是统计学家。
和纯数学相比,统计学不太"干净",不少数学家甚至拒绝承认统计学是数学。但如果和人工智能相比,统计学就太干净了,统计学研究的问题是清楚的,不象人工智能那样,连问题到底在哪里都不知道。在相当长时间里,统计学家和机器学习一直保持着距离。
慢慢地,不少统计学家逐渐意识到,统计学本来就该面向应用,而机器学习天生就是一个很好的切入点。因为机器学习虽然用到各种各样的数学,但要分析大
量数据中蕴涵的规律,统计学是必不可少的。统计学出身的机器学习研究者,绝大部分是把机器学习当作应用统计学。他们关注的是如何把统计学中的理论和方法变
成可以在计算机上有效实现的算法,至于这样的算法对人工智能中的什么问题有用,他们并不care。
这群人可能对人工智能毫无兴趣,在他们眼中,机器学习就是统计学习,是统计学比较偏向应用的一个分支,充其量是统计学与计算机科学的交叉。这群人对统计学习之外的学习手段往往是排斥的,这很自然,基于代数的、逻辑的、几何的学习,很难纳入统计学的范畴。
两个群体的文化和价值观完全不同。第一个群体认为好的工作,第二个群体可能觉得没有技术含量,但第一个群体可能恰恰认为,简单的才好,正因为很好地
抓住了问题本质,所以问题变得容易解决。第二个群体欣赏的工作,第一个群体可能觉得是故弄玄虚,看不出他想解决什么人工智能问题,根本就不是在搞人工智
能、搞计算机,但别人本来也没说自己是在"搞人工智能"、"搞计算机",本来就不是在为人工智能做研究。
两个群体各有其存在的意义,应该宽容一点,不需要去互较什么短长。但是既然顶着Machine Learning这个帽子的不是"一伙儿",而是"两伙儿",那么要"跟进"的新人就要谨慎了,先搞清楚自己更喜欢"哪伙儿"。
引两位著名学者的话结尾,一位是人工智能大奖得主、一位是统计学习大家,名字我不说了,省得惹麻烦:
"I do not come to AI to do statistics"
"I do not have interest in AI"
转自:http://hi.baidu.com/macula7/blog/item/8a3f22cd9587f81a00e92829.html
分享到:
相关推荐
"机器学习实战_Machine_Learning_in_Action.pdf" 机器学习实战是指通过实践和应用机器学习算法来解决实际问题的过程。在本书中,我们将学习机器学习的基础知识,包括k-近邻算法、决策树、基于概率论的分类方法、...
"使用ClickHouse的机器学习" ClickHouse是一款-column-based的分布式数据库管理系统,由Yandex开发,主要用于大规模数据处理和分析。随着机器学习和人工智能的兴起,ClickHouse也开始应用于机器学习领域。下面是...
机器学习的数学基础 machine learning.pdf
机器学习是人工智能的一个分支,它赋予了计算机从数据中学习和做出决策的能力。本篇内容围绕机器学习的各个方面展开讨论,包括OCR技术、垃圾邮件识别、自动出租车设计、关联规则学习、预测技术以及监督学习等多个...
吴恩达的机器学习课程主要包括两门,一门是在Cousera上的《机器学习》,另一门是他在斯坦福大学教授的《CS229: Machine Learning》。 Cousera上的《机器学习》课程侧重于概念理解,而不是数学推导。这门课程重视...
《Machine Learning for Kids》是一本专门为孩子们准备的书籍,作者Dale Lane通过一系列有趣且易于理解的项目,将复杂的机器学习概念变得简单易懂。本书的出版旨在激发儿童对人工智能的兴趣,并帮助他们掌握这一领域...
在本资源中,我们关注的是2020年吴恩达教授的《机器学习》(Machine Learning)课程的第五周编程作业,名为“ex4”。吴恩达是全球知名的计算机科学家,尤其在人工智能和深度学习领域有着深厚的造诣。他的这门机器...
### 《Machine Learning》by Tom M. Mitchell — Key Concepts and Insights #### Introduction to Machine Learning Machine learning is a subfield of artificial intelligence that focuses on the ...
《Machine Learning Design Patterns》是一本关于机器学习设计模式的书籍,作者是Valliappa Lakshmanan, Sara Robinson和Michael Munn。该书的主要内容是解决数据准备、模型构建和MLOps中的常见挑战。 在数据准备...
梁劲机器学习笔记-全面简单Getting Started With MachineLearning (all in one)_部分2。详细、明了地介绍了机器学习中的相关概念、数学知识和各种经典算法。以浅显易懂的方式去讲解它,降低大家的学习门槛。因为文件...
NI LabVIEW Machine Learning Toolkit是一款专为LabVIEW用户设计的机器学习工具包,它极大地扩展了LabVIEW在数据分析和模式识别领域的应用能力。该工具包集成了多种强大的机器学习算法,如支持向量机(SVM)和反向...
最新(2013年春)一期的Coursera 机器学习课程 Machine Learning Andrew Ng Stanford 课程项目(未包含答案)合集 Stanford这个的课程的核心就在于他的课程项目,全部是是现实实例的应用,绝对经典。自己动手做一做...
伯克利大学机器学习(Practical Machine Learning) 1、Tutorial 2、Regression 3、Classification 4、Clusetering 5、Dimensionality reduction .......... 14、Optimization methods for learning
Human-in-the-Loop Machine Learning lays out methods for humans and machines to work together effectively. Summary Most machine learning systems that are deployed in the world today learn from human ...
1. 标题“Python Machine Learning.pdf”表明文档是一本关于Python编程语言在机器学习领域应用的指南。这暗示了文档将会提供使用Python语言进行数据挖掘、建立预测模型、构建智能算法等机器学习相关的教程和示例。 ...
《Mastering Machine Learning With scikit-learn》是一本深度探讨机器学习技术的书籍,特别强调了使用Python中的scikit-learn库进行实践操作。scikit-learn是数据科学家和机器学习工程师广泛使用的开源库,它提供了...
机器学习问题解决指南 ...Approaching (Almost) Any Machine Learning Problem是一本涵盖机器学习基本概念、模型选择、数据预处理、特征工程、模型评估等多方面知识点的书籍,旨在帮助读者掌握机器学习问题解决方法。
机器学习 - MachineLearning - ML、深度学习 - DeepLearning - DL、自然语言处理 NLP
与“统计学习方法”相关的机器学习实现代码。机器学习._MachineLearning
概率机器学习(Probabilistic Machine Learning)是机器学习领域中一个重要的分支,它将概率论和机器学习结合起来,旨在处理不确定性和随机性问题。概率机器学习的主要目标是开发能够从数据中学习的概率模型,以便...