本文内容收集自网络,仅供自己学习和大家交流之用,如果侵犯了您的权益,请及时通知,会及时撤下!
预处理过程扫描源代码,对其进行初步的转换,产生新的源代码提供给编译器。可见预处理过程先于编译器对源代码进行处理。
在C语言中,并没有任何内在的机制来完成如下一些功能:在编译时包含其他源文件、定义宏、根据条件决定编译时是否包含某些代码。要完成这些工作,就需要使用预处理程序。尽管在目前绝大多数编译器都包含了预处理程序,但通常认为它们是独立于编译器的。预处理过程读入源代码,检查包含预处理指令的语句和宏定义,并对源代码进行响应的转换。预处理过程还会删除程序中的注释和多余的空白字符。
预处理指令是以#号开头的代码行。#号必须是该行除了任何空白字符外的第一个字符。#后是指令关键字,在关键字和#号之间允许存在任意个数的空白字符。整行语句构成了一条预处理指令,该指令将在编译器进行编译之前对源代码做某些转换。下面是部分预处理指令:
指令 用途
# 空指令,无任何效果
#include 包含一个源代码文件
#define 定义宏
#undef 取消已定义的宏
#if 如果给定条件为真,则编译下面代码
#ifdef 如果宏已经定义,则编译下面代码
#ifndef 如果宏没有定义,则编译下面代码
#elif 如果前面的#if给定条件不为真,当前条件为真,则编译下面代码
#endif 结束一个#if……#else条件编译块
#error 停止编译并显示错误信息
一、文件包含
#include预处理指令的作用是在指令处展开被包含的文件。包含可以是多重的,也就是说一个被包含的文件中还可以包含其他文件。标准C编译器至少支持八重嵌套包含。
预处理过程不检查在转换单元中是否已经包含了某个文件并阻止对它的多次包含。这样就可以在多次包含同一个头文件时,通过给定编译时的条件来达到不同的效果。例如:
#define AAA
#include "t.c"
#undef AAA
#include "t.c"
为了避免那些只能包含一次的头文件被多次包含,可以在头文件中用编译时条件来进行控制。例如:
#ifndef MY_H
#define MY_H
……
#endif
在程序中包含头文件有两种格式:
#include <my.h>
#include "my.h"
第一种方法是用尖括号把头文件括起来。这种格式告诉预处理程序在编译器自带的或外部库的头文件中搜索被包含的头文件。第二种方法是用双引号把头文件括起来。这种格式告诉预处理程序在当前被编译的应用程序的源代码文件中搜索被包含的头文件,如果找不到,再搜索编译器自带的头文件。
采用两种不同包含格式的理由在于,编译器是安装在公共子目录下的,而被编译的应用程序是在它们自己的私有子目录下的。一个应用程序既包含编译器提供的公共头文件,也包含自定义的私有头文件。采用两种不同的包含格式使得编译器能够在很多头文件中区别出一组公共的头文件。
二、宏
宏定义了一个代表特定内容的标识符。预处理过程会把源代码中出现的宏标识符替换成宏定义时的值。宏最常见的用法是定义代表某个值的全局符号。宏的第二种用法是定义带参数的宏,这样的宏可以象函数一样被调用,但它是在调用语句处展开宏,并用调用时的实际参数来代替定义中的形式参数。
1.#define指令
#define预处理指令是用来定义宏的。该指令最简单的格式是:首先神明一个标识符,然后给出这个标识符代表的代码。在后面的源代码中,就用这些代码来替代该标识符。这种宏把程序中要用到的一些全局值提取出来,赋给一些记忆标识符。
#define MAX_NUM 10
int array[MAX_NUM];
for(i=0;i<MAX_NUM;i++)
在这个例子中,对于阅读该程序的人来说,符号MAX_NUM就有特定的含义,它代表的值给出了数组所能容纳的最大元素数目。程序中可以多次使用这个值。作为一种约定,习惯上总是全部用大写字母来定义宏,这样易于把程序红的宏标识符和一般变量标识符区别开来。如果想要改变数组的大小,只需要更改宏定义并重新编译程序即可。
宏表示的值可以是一个常量表达式,其中允许包括前面已经定义的宏标识符。例如:
#define ONE 1
#define TWO 2
#define THREE (ONE+TWO)
注意上面的宏定义使用了括号。尽管它们并不是必须的。但出于谨慎考虑,还是应该加上括号的。例如:
six=THREE*TWO;
预处理过程把上面的一行代码转换成:
six=(ONE+TWO)*TWO;
如果没有那个括号,就转换成six=ONE+TWO*TWO;了。
宏还可以代表一个字符串常量,例如:
#define VERSION "Version 1.0 Copyright(c) 2003"
2.带参数的#define指令
带参数的宏和函数调用看起来有些相似。看一个例子:
#define Cube(x) (x)*(x)*(x)
可以时任何数字表达式甚至函数调用来代替参数x。这里再次提醒大家注意括号的使用。宏展开后完全包含在一对括号中,而且参数也包含在括号中,这样就保证了宏和参数的完整性。看一个用法:
int num=8+2;
volume=Cube(num);
展开后为(8+2)*(8+2)*(8+2);
如果没有那些括号就变为8+2*8+2*8+2了。
下面的用法是不安全的:
volume=Cube(num++);
如果Cube是一个函数,上面的写法是可以理解的。但是,因为Cube是一个宏,所以会产生副作用。这里的擦书不是简单的表达式,它们将产生意想不到的结果。它们展开后是这样的:
volume=(num++)*(num++)*(num++);
很显然,结果是10*11*12,而不是10*10*10;
那么怎样安全的使用Cube宏呢?必须把可能产生副作用的操作移到宏调用的外面进行:
int num=8+2;
volume=Cube(num);
num++;
3.#运算符
出现在宏定义中的#运算符把跟在其后的参数转换成一个字符串。有时把这种用法的#称为字符串化运算符。例如:
#define PASTE(n) "adhfkj"#n
main()
{
printf("%s\n",PASTE(15));
}
宏定义中的#运算符告诉预处理程序,把源代码中任何传递给该宏的参数转换成一个字符串。所以输出应该是adhfkj15。
4.##运算符
##运算符用于把参数连接到一起。预处理程序把出现在##两侧的参数合并成一个符号。看下面的例子:
#define NUM(a,b,c) a##b##c
#define STR(a,b,c) a##b##c
main()
{
printf("%d\n",NUM(1,2,3));
printf("%s\n",STR("aa","bb","cc"));
}
最后程序的输出为:
123
aabbcc
千万别担心,除非需要或者宏的用法恰好和手头的工作相关,否则很少有程序员会知道##运算符。绝大多数程序员从来没用过它。
三、条件编译指令
条件编译指令将决定那些代码被编译,而哪些是不被编译的。可以根据表达式的值或者某个特定的宏是否被定义来确定编译条件。
1.#if指令
#if指令检测跟在制造另关键字后的常量表达式。如果表达式为真,则编译后面的代码,知道出现#else、#elif或#endif为止;否则就不编译。
2.#endif指令
#endif用于终止#if预处理指令。
#define DEBUG 0
main()
{
#if DEBUG
printf("Debugging\n");
#endif
printf("Running\n");
}
由于程序定义DEBUG宏代表0,所以#if条件为假,不编译后面的代码直到#endif,所以程序直接输出Running。
如果去掉#define语句,效果是一样的。
3.#ifdef和#ifndef
#define DEBUG
main()
{
#ifdef DEBUG
printf("yes\n");
#endif
#ifndef DEBUG
printf("no\n");
#endif
}
#if defined等价于#ifdef; #if !defined等价于#ifndef
4.#else指令
#else指令用于某个#if指令之后,当前面的#if指令的条件不为真时,就编译#else后面的代码。#endif指令将中指上面的条件块。
#define DEBUG
main()
{
#ifdef DEBUG
printf("Debugging\n");
#else
printf("Not debugging\n");
#endif
printf("Running\n");
}
5.#elif指令
#elif预处理指令综合了#else和#if指令的作用。
#define TWO
main()
{
#ifdef ONE
printf("1\n");
#elif defined TWO
printf("2\n");
#else
printf("3\n");
#endif
}
程序很好理解,最后输出结果是2。
6.其他一些标准指令
#error指令将使编译器显示一条错误信息,然后停止编译。
#line指令可以改变编译器用来指出警告和错误信息的文件号和行号。
#pragma指令没有正式的定义。编译器可以自定义其用途。典型的用法是禁止或允许某些烦人的警告信息。
一:#pragma warning指令
该指令允许有选择性的修改编译器的警告消息的行为
指令格式如下:
#pragma warning( warning-specifier : warning-number-list [; warning-specifier : warning-number-list...]
#pragma warning( push[ ,n ] )
#pragma warning( pop )
主要用到的警告表示有如下几个:
once:只显示一次(警告/错误等)消息
default:重置编译器的警告行为到默认状态
1,2,3,4:四个警告级别
disable:禁止指定的警告信息
error:将指定的警告信息作为错误报告
如果大家对上面的解释不是很理解,可以参考一下下面的例子及说明
#pragma warning( disable : 4507 34; once : 4385; error : 164 )
等价于:
#pragma warning(disable:4507 34) // 不显示4507和34号警告信息
#pragma warning(once:4385) // 4385号警告信息仅报告一次
#pragma warning(error:164) // 把164号警告信息作为一个错误。
同时这个pragma warning 也支持如下格式:
#pragma warning( push [ ,n ] )
#pragma warning( pop )
这里n代表一个警告等级(1---4)。
#pragma warning( push )保存所有警告信息的现有的警告状态。
#pragma warning( push, n)保存所有警告信息的现有的警告状态,并且把全局警告
等级设定为n。
#pragma warning( pop )向栈中弹出最后一个警告信息,在入栈和出栈之间所作的
一切改动取消。例如:
#pragma warning( push )
#pragma warning( disable : 4705 )
#pragma warning( disable : 4706 )
#pragma warning( disable : 4707 )
#pragma warning( pop )
在这段代码的最后,重新保存所有的警告信息(包括4705,4706和4707)
在使用标准C++进行编程的时候经常会得到很多的警告信息,而这些警告信息都是不必要的提示,
所以我们可以使用#pragma warning(disable:4786)来禁止该类型的警告
在vc中使用ADO的时候也会得到不必要的警告信息,这个时候我们可以通过
#pragma warning(disable:4146)来消除该类型的警告信息
二:#pragma pack()
注:如果设置的值比结构体中字节最长的类型还要大,则这个变量(注意仅针对这一个变量)只按照它的字节长度对齐,即不会出现内存浪费的情况。请参见(4)。
(1)
#pragma pack(1) //每个变量按照1字节对齐
struct A
{
char x; //aligned on byte boundary 0
int y; //aligned on byte boundary 1
}a;
sizeof(a)==5
(2)
#pragma pack(2) //每个变量按照2字节对齐
struct A
{
char x; //aligned on byte boundary 0
int y; //aligned on byte boundary 2
}a;
sizeof(a)==6
(3)
#pragma pack(4) //每个变量按照4字节对齐
struct A
{
char x; //aligned on byte boundary 0
int y; //aligned on byte boundary 4
}a;
sizeof(a)==8
(4)
#pragma pack() //默认,相当于#pragma pack(8) 每个变量按照8字节对齐
struct A
{
char x; //aligned on byte boundary 0
int y; //aligned on byte boundary 4
}a;
sizeof(a)==8
但是这里y的大小是4字节,所以不会按照8字节对齐,否则将造成1个int空间的浪费
三.#pragma comment
The following pragma causes the linker to search for the EMAPI.LIB library while linking. The linker searches first in the current working directory and then in the path specified in the LIB environment variable:
#pragma comment( lib, "emapi" )
四.#pragma deprecated
When the compiler encounters a deprecated symbol, it issues C4995:
void func1(void) {}
void func2(void) {}
int main() {
func1();
func2();
#pragma deprecated(func1, func2)
func1(); // C4995
func2(); // C4995
}
五.#pragma message
The following code fragment uses the message pragma to display a message during compilation:
#if _M_IX86 == 500
#pragma message( "Pentium processor build" )
#endif
预处理过程扫描源代码,对其进行初步的转换,产生新的源代码提供给编译器。可见预处理过程先于编译器对源代码进行处理。
在C语言中,并没有任何内在的机制来完成如下一些功能:在编译时包含其他源文件、定义宏、根据条件决定编译时是否包含某些代码。要完成这些工作,就需要使用预处理程序。尽管在目前绝大多数编译器都包含了预处理程序,但通常认为它们是独立于编译器的。预处理过程读入源代码,检查包含预处理指令的语句和宏定义,并对源代码进行响应的转换。预处理过程还会删除程序中的注释和多余的空白字符。
预处理指令是以#号开头的代码行。#号必须是该行除了任何空白字符外的第一个字符。#后是指令关键字,在关键字和#号之间允许存在任意个数的空白字符。整行语句构成了一条预处理指令,该指令将在编译器进行编译之前对源代码做某些转换。下面是部分预处理指令:
指令 用途
# 空指令,无任何效果
#include 包含一个源代码文件
#define 定义宏
#undef 取消已定义的宏
#if 如果给定条件为真,则编译下面代码
#ifdef 如果宏已经定义,则编译下面代码
#ifndef 如果宏没有定义,则编译下面代码
#elif 如果前面的#if给定条件不为真,当前条件为真,则编译下面代码
#endif 结束一个#if……#else条件编译块
#error 停止编译并显示错误信息
一、文件包含
#include预处理指令的作用是在指令处展开被包含的文件。包含可以是多重的,也就是说一个被包含的文件中还可以包含其他文件。标准C编译器至少支持八重嵌套包含。
预处理过程不检查在转换单元中是否已经包含了某个文件并阻止对它的多次包含。这样就可以在多次包含同一个头文件时,通过给定编译时的条件来达到不同的效果。例如:
#define AAA
#include "t.c"
#undef AAA
#include "t.c"
为了避免那些只能包含一次的头文件被多次包含,可以在头文件中用编译时条件来进行控制。例如:
#ifndef MY_H
#define MY_H
……
#endif
在程序中包含头文件有两种格式:
#include <my.h>
#include "my.h"
第一种方法是用尖括号把头文件括起来。这种格式告诉预处理程序在编译器自带的或外部库的头文件中搜索被包含的头文件。第二种方法是用双引号把头文件括起来。这种格式告诉预处理程序在当前被编译的应用程序的源代码文件中搜索被包含的头文件,如果找不到,再搜索编译器自带的头文件。
采用两种不同包含格式的理由在于,编译器是安装在公共子目录下的,而被编译的应用程序是在它们自己的私有子目录下的。一个应用程序既包含编译器提供的公共头文件,也包含自定义的私有头文件。采用两种不同的包含格式使得编译器能够在很多头文件中区别出一组公共的头文件。
二、宏
宏定义了一个代表特定内容的标识符。预处理过程会把源代码中出现的宏标识符替换成宏定义时的值。宏最常见的用法是定义代表某个值的全局符号。宏的第二种用法是定义带参数的宏,这样的宏可以象函数一样被调用,但它是在调用语句处展开宏,并用调用时的实际参数来代替定义中的形式参数。
1.#define指令
#define预处理指令是用来定义宏的。该指令最简单的格式是:首先神明一个标识符,然后给出这个标识符代表的代码。在后面的源代码中,就用这些代码来替代该标识符。这种宏把程序中要用到的一些全局值提取出来,赋给一些记忆标识符。
#define MAX_NUM 10
int array[MAX_NUM];
for(i=0;i<MAX_NUM;i++)
在这个例子中,对于阅读该程序的人来说,符号MAX_NUM就有特定的含义,它代表的值给出了数组所能容纳的最大元素数目。程序中可以多次使用这个值。作为一种约定,习惯上总是全部用大写字母来定义宏,这样易于把程序红的宏标识符和一般变量标识符区别开来。如果想要改变数组的大小,只需要更改宏定义并重新编译程序即可。
宏表示的值可以是一个常量表达式,其中允许包括前面已经定义的宏标识符。例如:
#define ONE 1
#define TWO 2
#define THREE (ONE+TWO)
注意上面的宏定义使用了括号。尽管它们并不是必须的。但出于谨慎考虑,还是应该加上括号的。例如:
six=THREE*TWO;
预处理过程把上面的一行代码转换成:
six=(ONE+TWO)*TWO;
如果没有那个括号,就转换成six=ONE+TWO*TWO;了。
宏还可以代表一个字符串常量,例如:
#define VERSION "Version 1.0 Copyright(c) 2003"
2.带参数的#define指令
带参数的宏和函数调用看起来有些相似。看一个例子:
#define Cube(x) (x)*(x)*(x)
可以时任何数字表达式甚至函数调用来代替参数x。这里再次提醒大家注意括号的使用。宏展开后完全包含在一对括号中,而且参数也包含在括号中,这样就保证了宏和参数的完整性。看一个用法:
int num=8+2;
volume=Cube(num);
展开后为(8+2)*(8+2)*(8+2);
如果没有那些括号就变为8+2*8+2*8+2了。
下面的用法是不安全的:
volume=Cube(num++);
如果Cube是一个函数,上面的写法是可以理解的。但是,因为Cube是一个宏,所以会产生副作用。这里的擦书不是简单的表达式,它们将产生意想不到的结果。它们展开后是这样的:
volume=(num++)*(num++)*(num++);
很显然,结果是10*11*12,而不是10*10*10;
那么怎样安全的使用Cube宏呢?必须把可能产生副作用的操作移到宏调用的外面进行:
int num=8+2;
volume=Cube(num);
num++;
3.#运算符
出现在宏定义中的#运算符把跟在其后的参数转换成一个字符串。有时把这种用法的#称为字符串化运算符。例如:
#define PASTE(n) "adhfkj"#n
main()
{
printf("%s\n",PASTE(15));
}
宏定义中的#运算符告诉预处理程序,把源代码中任何传递给该宏的参数转换成一个字符串。所以输出应该是adhfkj15。
4.##运算符
##运算符用于把参数连接到一起。预处理程序把出现在##两侧的参数合并成一个符号。看下面的例子:
#define NUM(a,b,c) a##b##c
#define STR(a,b,c) a##b##c
main()
{
printf("%d\n",NUM(1,2,3));
printf("%s\n",STR("aa","bb","cc"));
}
最后程序的输出为:
123
aabbcc
千万别担心,除非需要或者宏的用法恰好和手头的工作相关,否则很少有程序员会知道##运算符。绝大多数程序员从来没用过它。
三、条件编译指令
条件编译指令将决定那些代码被编译,而哪些是不被编译的。可以根据表达式的值或者某个特定的宏是否被定义来确定编译条件。
1.#if指令
#if指令检测跟在制造另关键字后的常量表达式。如果表达式为真,则编译后面的代码,知道出现#else、#elif或#endif为止;否则就不编译。
2.#endif指令
#endif用于终止#if预处理指令。
#define DEBUG 0
main()
{
#if DEBUG
printf("Debugging\n");
#endif
printf("Running\n");
}
由于程序定义DEBUG宏代表0,所以#if条件为假,不编译后面的代码直到#endif,所以程序直接输出Running。
如果去掉#define语句,效果是一样的。
3.#ifdef和#ifndef
#define DEBUG
main()
{
#ifdef DEBUG
printf("yes\n");
#endif
#ifndef DEBUG
printf("no\n");
#endif
}
#if defined等价于#ifdef; #if !defined等价于#ifndef
4.#else指令
#else指令用于某个#if指令之后,当前面的#if指令的条件不为真时,就编译#else后面的代码。#endif指令将中指上面的条件块。
#define DEBUG
main()
{
#ifdef DEBUG
printf("Debugging\n");
#else
printf("Not debugging\n");
#endif
printf("Running\n");
}
5.#elif指令
#elif预处理指令综合了#else和#if指令的作用。
#define TWO
main()
{
#ifdef ONE
printf("1\n");
#elif defined TWO
printf("2\n");
#else
printf("3\n");
#endif
}
程序很好理解,最后输出结果是2。
6.其他一些标准指令
#error指令将使编译器显示一条错误信息,然后停止编译。
#line指令可以改变编译器用来指出警告和错误信息的文件号和行号。
#pragma指令没有正式的定义。编译器可以自定义其用途。典型的用法是禁止或允许某些烦人的警告信息。
一:#pragma warning指令
该指令允许有选择性的修改编译器的警告消息的行为
指令格式如下:
#pragma warning( warning-specifier : warning-number-list [; warning-specifier : warning-number-list...]
#pragma warning( push[ ,n ] )
#pragma warning( pop )
主要用到的警告表示有如下几个:
once:只显示一次(警告/错误等)消息
default:重置编译器的警告行为到默认状态
1,2,3,4:四个警告级别
disable:禁止指定的警告信息
error:将指定的警告信息作为错误报告
如果大家对上面的解释不是很理解,可以参考一下下面的例子及说明
#pragma warning( disable : 4507 34; once : 4385; error : 164 )
等价于:
#pragma warning(disable:4507 34) // 不显示4507和34号警告信息
#pragma warning(once:4385) // 4385号警告信息仅报告一次
#pragma warning(error:164) // 把164号警告信息作为一个错误。
同时这个pragma warning 也支持如下格式:
#pragma warning( push [ ,n ] )
#pragma warning( pop )
这里n代表一个警告等级(1---4)。
#pragma warning( push )保存所有警告信息的现有的警告状态。
#pragma warning( push, n)保存所有警告信息的现有的警告状态,并且把全局警告
等级设定为n。
#pragma warning( pop )向栈中弹出最后一个警告信息,在入栈和出栈之间所作的
一切改动取消。例如:
#pragma warning( push )
#pragma warning( disable : 4705 )
#pragma warning( disable : 4706 )
#pragma warning( disable : 4707 )
#pragma warning( pop )
在这段代码的最后,重新保存所有的警告信息(包括4705,4706和4707)
在使用标准C++进行编程的时候经常会得到很多的警告信息,而这些警告信息都是不必要的提示,
所以我们可以使用#pragma warning(disable:4786)来禁止该类型的警告
在vc中使用ADO的时候也会得到不必要的警告信息,这个时候我们可以通过
#pragma warning(disable:4146)来消除该类型的警告信息
二:#pragma pack()
注:如果设置的值比结构体中字节最长的类型还要大,则这个变量(注意仅针对这一个变量)只按照它的字节长度对齐,即不会出现内存浪费的情况。请参见(4)。
(1)
#pragma pack(1) //每个变量按照1字节对齐
struct A
{
char x; //aligned on byte boundary 0
int y; //aligned on byte boundary 1
}a;
sizeof(a)==5
(2)
#pragma pack(2) //每个变量按照2字节对齐
struct A
{
char x; //aligned on byte boundary 0
int y; //aligned on byte boundary 2
}a;
sizeof(a)==6
(3)
#pragma pack(4) //每个变量按照4字节对齐
struct A
{
char x; //aligned on byte boundary 0
int y; //aligned on byte boundary 4
}a;
sizeof(a)==8
(4)
#pragma pack() //默认,相当于#pragma pack(8) 每个变量按照8字节对齐
struct A
{
char x; //aligned on byte boundary 0
int y; //aligned on byte boundary 4
}a;
sizeof(a)==8
但是这里y的大小是4字节,所以不会按照8字节对齐,否则将造成1个int空间的浪费
三.#pragma comment
The following pragma causes the linker to search for the EMAPI.LIB library while linking. The linker searches first in the current working directory and then in the path specified in the LIB environment variable:
#pragma comment( lib, "emapi" )
四.#pragma deprecated
When the compiler encounters a deprecated symbol, it issues C4995:
void func1(void) {}
void func2(void) {}
int main() {
func1();
func2();
#pragma deprecated(func1, func2)
func1(); // C4995
func2(); // C4995
}
五.#pragma message
The following code fragment uses the message pragma to display a message during compilation:
#if _M_IX86 == 500
#pragma message( "Pentium processor build" )
#endif
发表评论
-
linux网络编程
2012-03-11 15:16 1565(一)Linux网络编程--网 ... -
C/C++中的i18n(wcstombs和mbstowcs使用
2012-03-08 22:20 1690mbs: multi byte string, 用char作为 ... -
Vc中 windows 常用的数据类型
2012-03-07 22:42 1376匈牙利命名法 Microsoft采用匈牙利命名法来命名Win ... -
.C/C++面试题
2012-03-07 22:34 1392预处理器(Preprocessor) ... -
C语言 链表操作
2012-03-07 22:30 1817准备:动态内存分配 一 ... -
C++中String用法的简单总结
2012-03-07 22:21 40571. 定义和初始化 string s1 ... -
详细介绍各种字符集编码转换问题
2012-03-06 22:41 3955本文背景: 本人在编程时需要匹配字符串,由此想到了如果文件是 ... -
linux下vi不能使用
2012-02-27 22:15 4736由于安装一个软件,需要申明环境变量,于是我就 vi .bash ... -
c/c++数据类型转换
2012-02-24 21:56 2476c/c++数据类型转换1(float,char,string, ... -
ldconfig及 LD_LIBRARY_PATH
2012-02-24 21:48 17331. 往/lib和/usr/lib里面加 ... -
GCC 参数详解
2012-02-24 21:45 916[介绍] gcc and g++分别是g ... -
Linux系统中的环境变量知识详解
2012-02-24 21:34 1351对于没有使用过linux系统的用户来说,有很多术语和功能都很陌 ... -
Linux的环境变量
2012-02-22 23:05 1523一、Linux的变量种类 按变量的生存周期来划分 ...
相关推荐
#### 一、预编译头文件概念与作用 预编译头文件(Precompiled Headers, PCH)是一种优化技术,主要用于加速大型项目的编译过程。当项目中存在大量频繁使用的头文件时,通过预编译这些头文件可以显著提升编译速度。 ...
once参数可以保证头文件被编译一次,格式为: `#pragma once` 这可以防止头文件被多次编译。 hdrstop参数 hdrstop参数可以指定预编译头文件的结束位置,格式为: `#pragma hdrstop` 这可以防止某些头文件被预...
2. 使用 VC 的预编译头文件:VC 提供了一个名为 StdAfx.h 的预编译头文件,包含了 MFC 的核心组件和标准组件。 预编译头文件的优点是可以提高编译速度,因为编译器不需要每次都重新编译相同的代码。但是,生成预...
总结来说,Spring的`jdbcTemplate`是一个强大的工具,它简化了数据库操作,提供了预编译SQL的功能以避免SQL注入,同时通过回调机制允许我们在执行过程中进行定制化处理。无论是查询、插入还是调用存储过程,`...
预编译头文件(Precompiled Header, PCH)是预编译过程的一个应用,它允许将频繁变化较少的头文件预先编译成一个中间文件,之后在编译源文件时只需处理未预编译的部分,大大减少了编译时间。通常,我们将包含常用...
在使用Visual Studio 2008 (VS2008) 进行软件开发时,开发者可能会遇到一个棘手的问题,即"fatal error C1853: 预编译头错误"。这个错误通常表示编译器在处理预编译头文件时遇到了不一致或意外的情况,导致编译过程...
JavaScript预编译是一种优化代码执行效率的技术,尤其在大型项目中尤为重要。预编译的主要目的是在实际运行前处理代码,减少解析和运行时的负担,提高应用的性能。本篇文章将深入探讨JavaScript预编译的概念、重要性...
**OpenSSL 3.0.0 预编译二进制开发包详解** OpenSSL 是一个开源项目,提供了一套强大的加密库,包括各种安全协议、加密算法以及证书管理等,广泛应用于网络安全、服务器安全等领域。OpenSSL 3.0.0 是其最新版本,...
MySQL 预编译功能 MySQL 预编译功能是指在执行 SQL 语句之前,对 SQL 语句进行...预编译功能是 MySQL 中一个重要的功能,可以提高执行效率和减少服务器的负载。但是,需要根据实际情况进行权衡,选择合适的解决方案。
标题"java 支持C语言预编译指令"表明,这里可能涉及一种方法或工具,使得 Java 开发者能够在 Java 代码中使用类似于 C 预编译指令的功能。这通常通过编写脚本或使用第三方库来实现。例如,`gcc2java.sh` 文件很可能...
在进行OSG开发时,编译源代码可能需要花费相当多的时间,因此预编译包的存在极大地简化了这一过程,可以快速搭建开发环境,节约时间。 **OSG 3.0.0 版本介绍** OSG 3.0.0是OpenSceneGraph的一个重要版本,它带来了...
预编译头(Precompiled Header,PCH)是C++编程中提高编译效率的一种技术。它的核心思想是将项目中频繁使用且不常改动的头文件预先编译成一个二进制文件,通常以.pch为扩展名,以便在后续的编译过程中快速加载这些...
网站的预编译是一个重要的开发流程,特别是在大型项目或者高性能网站的构建中,它能够显著提升网站的加载速度和运行效率。预编译是将动态语言(如PHP、Ruby on Rails、ASP.NET等)的代码在部署之前转换为静态HTML、...
【IIS网站预编译工具】是一个用于提升ASP.NET网站性能和优化服务器资源管理的实用程序,源码的提供使得用户可以根据自身需求进行定制。在ASP.NET框架中,预编译是一个重要的步骤,尤其在大型或者高流量的网站中,它...
一、JSP预编译的重要性 JSP预编译的主要好处是提高应用响应速度。在没有预编译的情况下,JSP首次被请求时会经历以下步骤:解析JSP文件、生成Servlet源码、编译源码并部署到服务器。这个过程可能会消耗一定时间,...
《C语言预编译详解》 C语言的预编译机制是其独特之处,它将编译过程分为预处理和正式编译两个阶段。预处理阶段主要负责处理以符号“#”开头的预处理指令,这些指令不涉及语法和语义的检查,而是对源代码进行初步...
它确保头文件在整个项目中只被编译一次,避免重复定义的问题。虽然在VC6中就已经存在,但由于兼容性问题,其使用并不广泛。然而,随着现代编译器的支持增强,#pragma once已成为一种标准实践。 4. **#pragma ...
预编译过程发生在源代码编译之前,它通过一系列预编译指令来完成特定任务。这些指令通常以`#`符号开始,例如`#define`、`#include`等。预编译的具体流程可以总结如下: 1. **源程序文件**:源代码以`.C`扩展名保存...
在使用Cocos2d-x进行项目开发时,预编译配置是一个关键环节,能够显著提升开发效率,减少编译时间和避免不必要的重复编译工作。 预编译配置的核心目的是优化构建过程,它通过预先编译部分不经常变动的代码和资源,...