初等代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以
及以它们为系数的多项式的代数运算理论和方法的数学分支学科。
初等代数是更古老的算术的推广和发展。在古代,当算术里积累了大量的,关于各种数
量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生
了以解方程的原理为中心问题的初等代数。
代数是由算术演变来的,这是毫无疑问的。至于什么年代产生的代数学这门学科,就很
不容易说清楚了。比如,如果你认为“代数学”是指解ax2+bx+c=0这类用符号表示的方程的
技巧。那么,这种“代数学”是在十六世纪才发展起来的。
如果我们对代数符号不是要求象现在这样简练,那么,代数学的产生可上溯到更早的年
代。西方人将公元前三世纪古希腊数学家刁藩都看作是代数学的鼻祖。而在中国,用文字来
表达的代数问题出现的就更早了。
“代数”作为一个数学专有名词、代表一门数学分支在我国正式使用,最早是在1859年
。那年,清代数学家里李善兰和英国人韦列亚力共同翻译了英国人棣么甘所写的一本书,译
本的名称就叫做《代数学》。当然,代数的内容和方法,我国古代早就产生了,比如《九章
算术》中就有方程问题。
初等代数的中心内容是解方程,因而长期以来都把代数学理解成方程的科学,数学家们
也把主要精力集中在方程的研究上。它的研究方法是高度计算性的。
要讨论方程,首先遇到的一个问题是如何把实际中的数量关系组成代数式,然后根据等
量关系列出方程。所以初等代数的一个重要内容就是代数式。由于事物中的数量关系的不同
,大体上初等代数形成了整式、分式和根式这三大类代数式。代数式是数的化身,因而在代
数中,它们都可以进行四则运算,服从基本运算定律,而且还可以进行乘方和开方两种新的
运算。通常把这六种运算叫做代数运算,以区别于只包含四种运算的算术运算。
在初等代数的产生和发展的过程中,通过解方程的研究,也促进了数的概念的进一步发
展,将算术中讨论的整数和分数的概念扩充到有理数的范围,使数包括正负整数、正负分数
和零。这是初等代数的又一重要内容,就是数的概念的扩充。
有了有理数,初等代数能解决的问题就大大的扩充了。但是,有些方程在有理数范围内
仍然没有解。于是,数的概念在一次扩充到了实数,进而又进一步扩充到了复数。
那么到了复数范围内是不是仍然有方程没有解,还必须把复数再进行扩展呢?数学家们
说:不用了。这就是代数里的一个著名的定理—代数基本定理。这个定理简单地说就是n次
方程有n个根。1742年12月15日瑞士数学家欧拉曾在一封信中明确地做了陈述,后来另一个
数学家、德国的高斯在1799年给出了严格的证明。
把上面分析过的内容综合起来,组成初等代数的基本内容就是:
三种数——有理数、无理数、复数
三种式——整式、分式、根式
中心内容是方程——整式方程、分式方程、根式方程和方程组。
初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同。比如
,严格的说,数的概念、排列和组合应归入算术的内容;函数是分析数学的内容;不等式的
解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范
围;坐标法是研究解析几何的……。这些都只是历史上形成的一种编排方法。
初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解。代
数运算的特点是只进行有限次的运算。全部初等代数总起来有十条规则。这是学习初等代数
需要理解并掌握的要点。
这十条规则是:
五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;
两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零
的数,等式不变;
三条指数律:同底数幂相乘,底数不变指数相加;指数的乘方等于底数不变指数相乘
积的乘方等于乘方的积。
初等代数学进一步的向两个方面发展,一方面是研究未知数更多的一次方程组;另一方
面是研究未知数次数更高的高次方程。这时候,代数学已由初等代数向着高等代数的方向发
展了。
分享到:
相关推荐
初等数学研究是李长明和周焕山两位作者共同完成的一部数学著作。本书详细介绍了初等数学的各个方面,其中包括初等代数、解析式、初等函数、方程与不等式、排列与组合、初等几何等多个核心主题。初等数学是数学教育的...
初等数学和高等数学是数学学科的两大基石,它们各自有着独特的理论体系和应用范围。初等数学主要涉及我们日常生活中常见的数学概念和运算,包括算术、代数、几何和概率统计等基础内容。而高等数学则进一步深入探讨...
初等数学,作为数学的基础部分,涵盖了我们从小学到高中的主要数学知识,包括算术、代数、几何、概率和组合等多方面的内容。《初等数学解题妙趣》这本书,显然旨在通过有趣的方式揭示这些基础知识中的巧妙解题方法,...
《100个著名初等数学问题.历史和解》是一部深入浅出的数学著作,旨在探讨和解析一系列具有挑战性的初级数学难题。这本书不仅涵盖了基础的数学概念,还揭示了这些问题背后的深厚历史背景,为读者提供了一次既有趣又...
初等数学建模是数学应用的一种重要方法,它在解决实际问题时发挥着关键作用。MATLAB作为一种强大的数值计算和数据分析软件,常被用于数学建模的过程,为初学者提供了便利的学习工具。黄忠裕教授的这个课程针对的就是...
数学分析在初等数学中的运用与例题选讲 作者:王见勇 编著 出版时间:2015年版 内容简介 《数学分析在初等数学中的运用与例题选讲》共分极限、导数与微分、积分与级数四章.每一章的内容包括基本理论、方法及其在...
《100个著名初等数学问题》是一个包含一系列经典数学难题的集合,这些问题源自初等数学领域,旨在挑战和提升学生的逻辑思维、问题解决能力和数学应用技巧。初等数学是数学的基础,涵盖算术、代数、几何、概率与统计...
由于提供的文件内容似乎是一种无意义的文字序列,可能是OCR扫描错误的结果,这使得内容难以理解,并且无法从中提取出与初等数学研究相关的知识点。因此,我无法按照您的要求生成详细的IT知识。 尽管如此,我仍可以...
初等数学建模是数学应用的一种基础方法,它在解决实际问题时发挥着重要作用。2004年黄忠裕的初等数学建模资料,很可能是对这一领域的深入研究和教学材料的集合,旨在帮助学生和教育工作者理解并掌握如何运用基本数学...
初等数学建模是将现实生活中的问题通过数学的语言和方法进行表述、分析并求解的过程。这个过程通常涉及集合论、代数、几何、概率统计等多个数学分支,旨在帮助我们理解和解决实际问题。黄忠裕教授的课程"2004_黄忠裕...
初等数学复习及研究(平面几何部分)(老版),梁绍鸿著。很经典的平面几何书籍!
01.抽屉原则及其他-常庚哲 初等数学小丛书(1).pdf
根据提供的文件信息,我们可以归纳总结出一系列与初等数学相关的公式和知识点。下面将详细解释这些公式,并尽可能地保持内容的丰富性和准确性。 ### 基础数学公式 #### 幂的基本运算 - **幂的定义**: \(a^n = a \...
初等数学是数学的基础,包含了我们从小学到高中的核心数学概念。这个阶段的学习涵盖了绝对值、比和比例、平均值、方程与不等式以及数列等多个关键领域。下面将详细阐述这些知识点。 首先,绝对值是数学中的一个重要...
高中初等数学笔记涵盖了高中数学的核心知识点,包括初等数学的基本概念、定理、公式及其应用。从目录可以看到,这份笔记共分为三章,每章又细分为不同的小节,对高中数学的学习内容进行了系统的梳理。 第一章 绪论 ...