1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
3.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
5.in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
6.下面的查询也将导致全表扫描:
select id from t where name like '%abc%'
若要提高效率,可以考虑全文检索。
7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2
9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)='abc'--name以abc开头的id
select id from t where datediff(day,createdate,'2005-11-30')=0--‘2005-11-30’生成的id
应改为:
select id from t where name like 'abc%'
select id from t where createdate>='2005-11-30' and createdate<'2005-12-1'
10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
12.不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(...)
13.很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
15.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。
16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。
17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
18.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
21.避免频繁创建和删除临时表,以减少系统表资源的消耗。
22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。
23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。
26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。
29.尽量避免大事务操作,提高系统并发能力。
30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。
分享到:
相关推荐
标题与描述概述的知识点主要集中在数据库查询优化技巧上,尤其针对拥有百万级别数据量的数据库。以下是对这些知识点的详细解读: ### 数据库快速查询优化技巧 #### 1. 避免全表扫描,优化WHERE子句 - **空值判断**...
【标题】:“百万数据查询优化海量数据查询优化” 在处理海量数据时,查询优化显得尤为重要,特别是当数据量达到百万级别甚至更高时。查询优化旨在提高数据查询的效率,减少查询时间,提升系统性能。以下是一些关键...
标题:"数据查询优化技巧三十则" 描述:"百万数据查询优化技巧 百万数据查询优化技巧" 根据提供的标题、描述和部分编码错误的内容,我们可以总结出一系列关于数据查询优化的重要技巧,这些技巧对于处理大规模...
数据库查询优化是数据库管理的关键环节,特别是在处理百万级乃至更大规模的数据时,高效的查询...以上这些优化技巧可以帮助改善查询性能,尤其在处理大规模数据时,这些方法能显著提升数据库系统的响应速度和整体效率。
### 查询优化技巧三十则 #### 1. 避免全表扫描 在编写 SQL 查询时,应尽可能地使用 `WHERE` 子句并结合 `ORDER BY` 或其他过滤条件来减少查询范围,避免不必要的全表扫描。例如: ```sql SELECT id FROM t WHERE ...
【百万数据级快速查询优化技巧】 在处理大数据量的数据库时,快速查询是至关重要的,以下是一些关于如何优化百万数据级别的查询效率的关键点: 1. **创建索引**:索引是提升查询速度的关键。在where子句和order by...
### 处理百万级以上的数据提高查询速度的方法 在处理大量数据时,如何优化SQL查询以提高查询效率是一项至关重要的技能。以下是从标题、描述、标签以及部分内容中提炼出的关键知识点,这些技巧可以帮助你在面对海量...
Oracle查询优化是数据库管理中的重要环节,它直接关系到数据库的性能和响应速度。...本文件通过介绍具体的优化技巧和案例分析,帮助读者理解并掌握这些技术,以提高Oracle数据库查询的效率和性能。
以下是一些关键的查询优化技巧: 1. **建立索引**:为 WHERE 子句和 ORDER BY 子句涉及的列创建索引,可以显著提高查询速度,避免全表扫描。索引使数据库能够快速定位到特定行,特别是对于大型表来说。 2. **避免 ...
### 三、Oracle查询优化的实用技巧 #### 3.1 SQL改写技巧 - **去除不必要的子查询**:通过适当的联接操作替换子查询,简化查询结构。 - **利用谓词下推**:将WHERE子句中的过滤条件尽可能提前至JOIN子句,减少参与...
Oracle查询的优化技巧,对大数据量查询的时候可以节省不少时间。
Oracle查询优化是数据库管理中的关键技能,尤其是在处理大型数据集时,有效的查询优化能显著提升系统性能,降低资源消耗。本书“Oracle查询优化改写-技巧与案例2.0”聚焦于这一主题,旨在为数据库管理员(DBA)和开发...
本文实例讲述了mysql优化小技巧之去除重复项实现方法。分享给大家供大家参考,具体如下: 说到这个去重,脑仁不禁得一疼,尤其是出具量比较大的时候。毕竟咱不是专业的DB,所以嘞,只能自己弄一下适合自己去重方法了...
Oracle数据库提供了多种工具和技术来帮助我们优化SQL查询,提高数据检索速度,减少资源消耗。这本书《Oracle查询优化改写 技巧与案例》应该是DBA和Oracle开发人员的重要参考资源。 首先,查询优化的基础是理解执行...