==操作符专门用来比较两个变量的值是否相等,也就是用于比较变量所对应的内存中所存储的数值是否相同,要比较两个基本类型的数据或两个引用变量是否相等,只能用==操作符。
如果一个变量指向的数据是对象类型的,那么,这时候涉及了两块内存,对象本身占用一块内存(堆内存),变量也占用一块内存,例如Objet obj = new Object();变量obj是一个内存,new Object()是另一个内存,此时,变量obj所对应的内存中存储的数值就是对象占用的那块内存的首地址。对于指向对象类型的变量,如果要比较两个变量是否指向同一个对象,即要看这两个变量所对应的内存中的数值是否相等,这时候就需要用==操作符进行比较。
equals方法是用于比较两个独立对象的内容是否相同,就好比去比较两个人的长相是否相同,它比较的两个对象是独立的。例如,对于下面的代码:
String a=new String("foo");
String b=new String("foo");
两条new语句创建了两个对象,然后用a,b这两个变量分别指向了其中一个对象,这是两个不同的对象,它们的首地址是不同的,即a和b中存储的数值是不相同的,所以,表达式a==b将返回false,而这两个对象中的内容是相同的,所以,表达式a.equals(b)将返回true。
在实际开发中,我们经常要比较传递进行来的字符串内容是否等,例如,String input = …;input.equals(“quit”),许多人稍不注意就使用==进行比较了,这是错误的,随便从网上找几个项目实战的教学视频看看,里面就有大量这样的错误。记住,字符串的比较基本上都是使用equals方法。
如果一个类没有自己定义equals方法,那么它将继承Object类的equals方法,Object类的equals方法的实现代码如下:
boolean equals(Object o){
return this==o;
}
这说明,如果一个类没有自己定义equals方法,它默认的equals方法(从Object 类继承的)就是使用==操作符,也是在比较两个变量指向的对象是否是同一对象,这时候使用equals和使用==会得到同样的结果,如果比较的是两个独立的对象则总返回false。如果你编写的类希望能够比较该类创建的两个实例对象的内容是否相同,那么你必须覆盖equals方法,由你自己写代码来决定在什么情况即可认为两个对象的内容是相同的。
分享到:
相关推荐
程序中的一个错误是`s2.eauals("+")`,应该是`s2.equals("+")`,这是检查字符串是否相等的正确方法。 6. 用户输入处理:第六个程序`Jiafa`也处理用户输入,但这里的目的是获取两个整数并进行计算。程序尝试读取两个...
4. 重写父类中的eauals()方法和hashcode()方法。 实体类的种类: A. 属性类,通常定义在model层里面。 B. 一般的实体类对应一个数据表,其中的属性对应数据表中的字段。 C. 让程序员在对数据库操作的时候不用写SQL...
1、文件内容:sblim-gather-provider-2.2.8-9.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/sblim-gather-provider-2.2.8-9.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊
本图书进销存管理系统管理员功能有个人中心,用户管理,图书类型管理,进货订单管理,商品退货管理,批销订单管理,图书信息管理,客户信息管理,供应商管理,库存分析管理,收入金额管理,应收金额管理,我的收藏管理。 用户功能有个人中心,图书类型管理,进货订单管理,商品退货管理,批销订单管理,图书信息管理,客户信息管理,供应商管理,库存分析管理,收入金额管理,应收金额管理。因而具有一定的实用性。 本站是一个B/S模式系统,采用Spring Boot框架,MYSQL数据库设计开发,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得图书进销存管理系统管理工作系统化、规范化。本系统的使用使管理人员从繁重的工作中解脱出来,实现无纸化办公,能够有效的提高图书进销存管理系统管理效率。 关键词:图书进销存管理系统;Spring Boot框架;MYSQL数据库
2024中国在人工智能领域的创新能力如何研究报告.pdf
人脸识别项目实战
人脸识别项目实战
人脸识别项目实战
内容概要:本文档详细介绍了基于CEEMDAN(完全自适应噪声集合经验模态分解)的方法实现时间序列信号分解的具体项目。文中涵盖项目背景介绍、主要目标、面临的挑战及解决方案、技术创新点、应用领域等多方面内容。项目通过多阶段流程(数据准备、模型设计与构建、性能评估、UI设计),并融入多项关键技术手段(自适应噪声引入、并行计算、机器学习优化等)以提高非线性非平稳信号的分析质量。同时,该文档包含详细的模型架构描述和丰富的代码样例(Python代码),有助于开发者直接参考与复用。 适合人群:具有时间序列分析基础的科研工作者、高校教师与研究生,从事信号处理工作的工程技术人员,或致力于数据科学研究的从业人员。 使用场景及目标:此项目可供那些面临时间序列数据中噪声问题的人群使用,尤其适用于需从含有随机噪音的真实世界信号里提取有意义成分的研究者。具体场景包括但不限于金融市场趋势预测、设备故障预警、医疗健康监控以及环境质量变动跟踪等,旨在提供一种高效的信号分离和分析工具,辅助专业人士进行精准判断和支持决策。 其他说明:本文档不仅限于理论讲解和技术演示,更着眼于实际工程项目落地应用,强调软硬件资源配置、系统稳定性测试等方面的细节考量。通过完善的代码实现说明以及GUI界面设计指南,使读者能够全面理解整个项目的开发流程,同时也鼓励后续研究者基于已有成果继续创新拓展,探索更多的改进空间与发展机遇。此外,针对未来可能遇到的各种情况,提出了诸如模型自我调整、多模态数据融合等发展方向,为长期发展提供了思路指导。
监护人,小孩和玩具数据集 4647张原始图片 监护人 食物 孩子 玩具 精确率可达85.4% pasical voc xml格式
人脸识别项目实战
人脸识别项目实战
在智慧园区建设的浪潮中,一个集高效、安全、便捷于一体的综合解决方案正逐步成为现代园区管理的标配。这一方案旨在解决传统园区面临的智能化水平低、信息孤岛、管理手段落后等痛点,通过信息化平台与智能硬件的深度融合,为园区带来前所未有的变革。 首先,智慧园区综合解决方案以提升园区整体智能化水平为核心,打破了信息孤岛现象。通过构建统一的智能运营中心(IOC),采用1+N模式,即一个智能运营中心集成多个应用系统,实现了园区内各系统的互联互通与数据共享。IOC运营中心如同园区的“智慧大脑”,利用大数据可视化技术,将园区安防、机电设备运行、车辆通行、人员流动、能源能耗等关键信息实时呈现在拼接巨屏上,管理者可直观掌握园区运行状态,实现科学决策。这种“万物互联”的能力不仅消除了系统间的壁垒,还大幅提升了管理效率,让园区管理更加精细化、智能化。 更令人兴奋的是,该方案融入了诸多前沿科技,让智慧园区充满了未来感。例如,利用AI视频分析技术,智慧园区实现了对人脸、车辆、行为的智能识别与追踪,不仅极大提升了安防水平,还能为园区提供精准的人流分析、车辆管理等增值服务。同时,无人机巡查、巡逻机器人等智能设备的加入,让园区安全无死角,管理更轻松。特别是巡逻机器人,不仅能进行360度地面全天候巡检,还能自主绕障、充电,甚至具备火灾预警、空气质量检测等环境感知能力,成为了园区管理的得力助手。此外,通过构建高精度数字孪生系统,将园区现实场景与数字世界完美融合,管理者可借助VR/AR技术进行远程巡检、设备维护等操作,仿佛置身于一个虚拟与现实交织的智慧世界。 最值得关注的是,智慧园区综合解决方案还带来了显著的经济与社会效益。通过优化园区管理流程,实现降本增效。例如,智能库存管理、及时响应采购需求等举措,大幅减少了库存积压与浪费;而设备自动化与远程监控则降低了维修与人力成本。同时,借助大数据分析技术,园区可精准把握产业趋势,优化招商策略,提高入驻企业满意度与营收水平。此外,智慧园区的低碳节能设计,通过能源分析与精细化管理,实现了能耗的显著降低,为园区可持续发展奠定了坚实基础。总之,这一综合解决方案不仅让园区管理变得更加智慧、高效,更为入驻企业与员工带来了更加舒适、便捷的工作与生活环境,是未来园区建设的必然趋势。
本届年会的主题是“青春梦想创新创业”。通过学术论文报告、创新创业项目展示、创业项目推介、工作研讨、联谊活动、大会报告等活动,全面展示大学生最新的创新创业成果。年会共收到491所高校推荐的学术论文756篇、创新创业展示项目721项、创业推介项目156项,合计1633项,为历届年会数量最高。经过36所“985”高校相关学科专家的初评以及国家级大学生创新创业训练计划专家组的复选,最终遴选出可参加本次年会的学术论文180篇,创新创业展示项目150个,创业推介项目45项,共计375项,涉及30个省市的236所高校。年会还收到了来自澳门特别行政区、俄罗斯的13项学术论文及参展项目。这些材料集中反映了各高校最新的创新创业教育成果,也直接体现了当代大学生的创新思维和实践能力。
人脸识别项目实战
6ES7215-1AG40-0XB0_V04.04.01固件4.5
在无人机上部署SchurVins的yaml配置文件
uniapp实战商城类app和小程序源码,包含后端API源码和交互完整源码。
基于MobileNet轻量级网络实现的常见30多种食物分类,包含数据集、训练脚本、验证脚本、推理脚本等等。 数据集总共20k左右,推理的形式是本地的网页推理
2024年央国企RPA市场研究报.pdf