`
- 浏览:
66425 次
- 性别:
- 来自:
鞍山
-
-
堆大小设置
JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
-
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k
- Xmx3550m :设置JVM最大可用内存为3550M。
-Xms3550m :设置JVM促使内存为3550m。此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。
-Xmn2g :设置年轻代大小为2G。整个堆大小=年轻代大小 + 年老代大小 + 持久代大小 。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。
-Xss128k :设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。更具应用的线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。
-
java -Xmx3550m -Xms3550m -Xss128k -XX:NewRatio=4 -XX:SurvivorRatio=4 -XX:MaxPermSize=16m -XX:MaxTenuringThreshold=0
-XX:NewRatio=4 :设置年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。设置为4,则年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5
-XX:SurvivorRatio=4 :设置年轻代中Eden区与Survivor区的大小比值。设置为4,则两个Survivor区与一个Eden区的比值为2:4,一个Survivor区占整个年轻代的1/6
-XX:MaxPermSize=16m :设置持久代大小为16m。
-XX:MaxTenuringThreshold=0 :设置垃圾最大年龄。如果设置为0的话,则年轻代对象不经过Survivor区,直接进入年老代 。对于年老代比较多的应用,可以提高效率。如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行多次复制,这样可以增加对象再年轻代的存活时间 ,增加在年轻代即被回收的概论。
-
回收器选择
JVM给了三种选择:串行收集器、并行收集器、并发收集器 ,但是串行收集器只适用于小数据量的情况,所以这里的选择主要针对并行收集器和并发收集器。默认情况下,JDK5.0以前都是使用串行收集器,如果想使用其他收集器需要在启动时加入相应参数。JDK5.0以后,JVM会根据当前系统配置 进行判断。
-
吞吐量优先 的并行收集器
如上文所述,并行收集器主要以到达一定的吞吐量为目标,适用于科学技术和后台处理等。
典型配置 :
-
java -Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20
-XX:+UseParallelGC :选择垃圾收集器为并行收集器。 此配置仅对年轻代有效。即上述配置下,年轻代使用并发收集,而年老代仍旧使用串行收集。
-XX:ParallelGCThreads=20 :配置并行收集器的线程数,即:同时多少个线程一起进行垃圾回收。此值最好配置与处理器数目相等。
-
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20 -XX:+UseParallelOldGC
-XX:+UseParallelOldGC :配置年老代垃圾收集方式为并行收集。JDK6.0支持对年老代并行收集。
-
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100
-XX:MaxGCPauseMillis=100 : 设置每次年轻代垃圾回收的最长时间,如果无法满足此时间,JVM会自动调整年轻代大小,以满足此值。
-
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100 -XX:+UseAdaptiveSizePolicy
-XX:+UseAdaptiveSizePolicy :设置此选项后,并行收集器会自动选择年轻代区大小和相应的Survivor区比例,以达到目标系统规定的最低相应时间或者收集频率等,此值建议使用并行收集器时,一直打开。
-
响应时间优先 的并发收集器
如上文所述,并发收集器主要是保证系统的响应时间,减少垃圾收集时的停顿时间。适用于应用服务器、电信领域等。
典型配置 :
-
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC :设置年老代为并发收集。测试中配置这个以后,-XX:NewRatio=4的配置失效了,原因不明。所以,此时年轻代大小最好用-Xmn设置。
-XX:+UseParNewGC :设置年轻代为并行收集。可与CMS收集同时使用。JDK5.0以上,JVM会根据系统配置自行设置,所以无需再设置此值。
-
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseConcMarkSweepGC-XX:CMSFullGCsBeforeCompaction=5 -XX:+UseCMSCompactAtFullCollection
-XX:CMSFullGCsBeforeCompaction :由于并发收集器不对内存空间进行压缩、整理,所以运行一段时间以后会产生“碎片”,使得运行效率降低。此值设置运行多少次GC以后对内存空间进行压缩、整理。
-XX:+UseCMSCompactAtFullCollection :打开对年老代的压缩。可能会影响性能,但是可以消除碎片
-
辅助信息
JVM提供了大量命令行参数,打印信息,供调试使用。主要有以下一些:
-
-XX:+PrintGC
输出形式:[GC 118250K->113543K(130112K), 0.0094143 secs] [Full GC 121376K->10414K(130112K), 0.0650971 secs]
-
-XX:+PrintGCDetails
输出形式:[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs] [GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured: 112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs]
-
-XX:+PrintGCTimeStamps -XX:+PrintGC:PrintGCTimeStamps可与上面两个混合使用
输出形式:11.851: [GC 98328K->93620K(130112K), 0.0082960 secs]
-
-XX:+PrintGCApplicationConcurrentTime: 打印每次垃圾回收前,程序未中断的执行时间。可与上面混合使用
输出形式:Application time: 0.5291524 seconds
-
-XX:+PrintGCApplicationStoppedTime :打印垃圾回收期间程序暂停的时间。可与上面混合使用
输出形式:Total time for which application threads were stopped: 0.0468229 seconds
-
-XX:PrintHeapAtGC :打印GC前后的详细堆栈信息
输出形式:
34.702: [GC {Heap before gc invocations=7:
def new generation total 55296K, used 52568K [0x1ebd0000, 0x227d0000, 0x227d0000)
eden space 49152K, 99% used [0x1ebd0000, 0x21bce430, 0x21bd0000)
from space 6144K, 55% used [0x221d0000, 0x22527e10, 0x227d0000)
to space 6144K, 0% used [0x21bd0000, 0x21bd0000, 0x221d0000)
tenured generation total 69632K, used 2696K [0x227d0000, 0x26bd0000, 0x26bd0000)
the space 69632K, 3% used [0x227d0000, 0x22a720f8, 0x22a72200, 0x26bd0000)
compacting perm gen total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)
the space 8192K, 35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)
ro space 8192K, 66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)
rw space 12288K, 46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)
34.735: [DefNew: 52568K->3433K(55296K), 0.0072126 secs] 55264K->6615K(124928K)Heap after gc invocations=8:
def new generation total 55296K, used 3433K [0x1ebd0000, 0x227d0000, 0x227d0000)
eden space 49152K, 0% used [0x1ebd0000, 0x1ebd0000, 0x21bd0000)
from space 6144K, 55% used [0x21bd0000, 0x21f2a5e8, 0x221d0000)
to space 6144K, 0% used [0x221d0000, 0x221d0000, 0x227d0000)
tenured generation total 69632K, used 3182K [0x227d0000, 0x26bd0000, 0x26bd0000)
the space 69632K, 4% used [0x227d0000, 0x22aeb958, 0x22aeba00, 0x26bd0000)
compacting perm gen total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)
the space 8192K, 35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)
ro space 8192K, 66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)
rw space 12288K, 46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)
}
, 0.0757599 secs]
-
-Xloggc:filename :与上面几个配合使用,把相关日志信息记录到文件以便分析。
- 常见配置汇总
- 堆设置
-
-Xms :初始堆大小
-
-Xmx :最大堆大小
-
-XX:NewSize=n :设置年轻代大小
-
-XX:NewRatio=n: 设置年轻代和年老代的比值。如:为3,表示年轻代与年老代比值为1:3,年轻代占整个年轻代年老代和的1/4
-
-XX:SurvivorRatio=n :年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示Eden:Survivor=3:2,一个Survivor区占整个年轻代的1/5
-
-XX:MaxPermSize=n :设置持久代大小
- 收集器设置
-
-XX:+UseSerialGC :设置串行收集器
-
-XX:+UseParallelGC :设置并行收集器
-
-XX:+UseParalledlOldGC :设置并行年老代收集器
-
-XX:+UseConcMarkSweepGC :设置并发收集器
- 垃圾回收统计信息
- -XX:+PrintGC
- -XX:+PrintGCDetails
- -XX:+PrintGCTimeStamps
- -Xloggc:filename
- 并行收集器设置
-
-XX:ParallelGCThreads=n :设置并行收集器收集时使用的CPU数。并行收集线程数。
-
-XX:MaxGCPauseMillis=n :设置并行收集最大暂停时间
-
-XX:GCTimeRatio=n :设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)
- 并发收集器设置
-
-XX:+CMSIncrementalMode :设置为增量模式。适用于单CPU情况。
-
-XX:ParallelGCThreads=n :设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。
分享到:
Global site tag (gtag.js) - Google Analytics
相关推荐
标题中提到了JVM原理、JVM调优、JVM内存模型和JAVA并发,这些都是Java虚拟机(JVM)相关的核心概念。JVM是运行Java字节码的虚拟计算机,为Java提供了一个跨平台的环境,确保Java程序可以在不同的操作系统上运行而...
### 马士兵JVM调优笔记知识点梳理 #### 一、Java内存结构 Java程序运行时,其内存被划分为几个不同的区域,包括堆内存(Heap)、方法区(Method Area)、栈(Stack)、程序计数器(Program Counter Register)以及...
### JVM调优详解 #### 一、JVM调优概述 在现代软件开发中,Java虚拟机(JVM)作为Java应用程序的运行环境,对于提高应用程序的性能至关重要。JVM调优是指通过调整JVM的各种参数来优化Java应用程序的运行效率,减少...
在现代的软件开发与运行环境中,Java虚拟机(JVM)的性能调优是非常重要的一环,特别是在处理大型应用程序或者服务时,合适的JVM调优能够显著提升系统性能和稳定性。本篇文档详细介绍了JVM调优工具的命令使用及其...
在JVM调优实践中,了解各个运行时数据区的工作原理至关重要。以下是对这些区域的详细解析: 1. **虚拟机栈**:每个线程都有一个独立的虚拟机栈,用于存储方法调用时的栈帧。栈帧中包含局部变量表(存储方法中的变量...
《Monkey老师的JVM调优深度解析》 在Java开发领域,JVM(Java Virtual Machine)是每一个程序员都需要深入了解的关键组成部分。Monkey老师的JVM调优课程,无疑为我们提供了一个宝贵的平台,来深入探究JVM的工作原理...
JVM调优总结 -Xms -Xmx -Xmn -Xss JVM 调优是 Java virtual machine 的性能优化,通过调整 JVM 的参数来提高 Java 应用程序的性能。其中,-Xms、-Xmx、-Xmn、-Xss 是四个重要的参数,分别控制 JVM 的初始堆大小、...
《JVM调优实战解析》 在Java开发领域,JVM(Java Virtual Machine)是运行所有Java应用程序的基础,它的性能直接影响着程序的运行效率。因此,掌握JVM调优技术对于提升系统的稳定性和性能至关重要。本文将围绕"JVM...
### JVM调优与垃圾回收机制详解 #### 一、引言 随着软件系统的复杂度不断提高,性能优化成为了软件开发中的一个重要环节。对于Java应用程序来说,Java虚拟机(JVM)的性能直接影响着应用的整体表现。垃圾回收(GC)...
马老师 JVM 调优实战笔记 JVM 调优是 Java 开发者们不可或缺的技能,它直接影响着 Java 应用程序的性能和稳定性。本笔记是马老师的 JVM 调优实战笔记,涵盖了 JVM 的概述、内存结构、堆内存、垃圾回收算法、JVM ...
JVM调优是一个复杂的过程,它涉及到对Java虚拟机内部工作原理的深刻理解。本文档总结了JVM调优的基础知识和一些核心概念,旨在帮助开发者更好地掌握Java程序的性能优化。 首先,文档提到了Java中的数据类型分为基本...
JVM调优实战 本文档旨在介绍JVM调优实战的各个方面,包括JVM内存、垃圾回收、性能优化等。通过对JVM内存结构、垃圾回收机制和性能优化策略的详细讲解,帮助读者深入理解JVM的工作原理和优化方法。 1. JVM内存结构 ...
JVM面试资料。 JVM结构:类加载器,执行引擎,本地方法接口,本地内存结构; 四大垃圾回收算法:复制算法、标记-清除算法、标记-整理算法、分代收集算法 ...JVM调优:命令行指令,设置堆内存大小的参数
在深入讨论JVM(Java虚拟机)调优之前,我们有必要先了解一下虚拟机的基本概念和堆栈...通过上述的分析和总结,我们可以得出,JVM调优是一个涉及多方面知识的复杂过程,需要开发者具备扎实的理论基础和丰富的实践经验。
【JVM调优实战经验】 在Java开发中,JVM(Java Virtual Machine)的调优是提高应用程序性能的关键环节。JVM调优涉及到对内存管理、垃圾回收机制以及相关参数的调整,以优化应用程序的运行效率和稳定性。本文将深入...
分析常见的JVM调优技术及其相关条件,以及在实战中怎么使用到相关的技术进行调优,比较适合中高级开发进行学习,适合对JVM理解较深的开发学习
### JVM调优攻略 #### 一、概述 《JVM调优攻略》是一份详尽的文档,旨在帮助开发者理解并掌握Java虚拟机(JVM)的优化技巧。本指南不仅适用于初学者,对于有一定基础的开发人员来说也同样具有很高的参考价值。文档中...
《JVM调优实战》是一份深入探讨Java虚拟机(JVM)性能优化的文档,主要分为理论篇和实战篇两大部分。本文将详细解析其中的关键知识点。 理论篇首先介绍了JVM内存模型,将其比喻为一个多功能的养鱼塘。在这个比喻中...