以我的经验来讲,理解 Kubernetes 集群服务的概念,是比较不容易的一件事情。尤其是当我们基于似是而非的理解,去排查服务相关问题的时候,会非常不顺利。
这体现在,对于新手来说,ping 不通服务的 IP 地址这样基础的问题,都很难理解;而就算对经验很丰富的工程师来说,看懂服务相关的 iptables 配置,也是有相当的挑战的。
今天这边文章,我来深入解释一下 Kubernetes 集群服务的原理与实现,便于大家理解。
Kubernetes 集群服务的本质是什么
概念上来讲,Kubernetes 集群的服务,其实就是负载均衡、或反向代理。这跟阿里云的负载均衡产品,有很多类似的地方。和负载均衡一样,服务有它的 IP 地址以及前端端口;服务后边会挂载多个容器组 Pod 作为其“后端服务器”,这些“后端服务器”有自己的 IP 以及监听端口。
当这样的负载均衡和后端的架构,与 Kubernetes 集群结合的时候,我们可以想到的最直观的实现方式,就是集群中某一个节点专门做负载均衡(类似 LVS)的角色,而其他节点则用来负载后端容器组。
这样的实现方法,有一个巨大的缺陷,就是单点问题。Kubernetes 集群是 Google 多年来自动化运维实践的结晶,这样的实现显然与其智能运维的哲学相背离的。
自带通信员
边车模式(Sidecar)是微服务领域的核心概念。边车模式,换一句通俗一点的说法,就是自带通信员。熟悉服务网格的同学肯定对这个很熟悉了。但是可能比较少人注意到,其实 Kubernetes 集群原始服务的实现,也是基于 Sidecar 模式的。
在 Kubernetes 集群中,服务的实现,实际上是为每一个集群节点上,部署了一个反向代理 Sidecar。而所有对集群服务的访问,都会被节点上的反向代理转换成对服务后端容器组的访问。基本上来说,节点和这些 Sidecar 的关系如下图所示。
把服务照进现实
前边两节,我们看到了,Kubernetes 集群的服务,本质上是负载均衡,即反向代理;同时我们知道了,在实际实现中,这个反向代理,并不是部署在集群某一个节点上,而是作为集群节点的边车,部署在每个节点上的。
在这里把服务照进反向代理这个现实的,是 Kubernetes 集群的一个控制器,即 kube-proxy。关于 Kubernetes 集群控制器的原理,请参考我另外一篇关于控制器的文章。简单来说,kube-proxy 作为部署在集群节点上的控制器,它们通过集群 API Server 监听着集群状态变化。当有新的服务被创建的时候,kube-proxy 则会把集群服务的状态、属性,翻译成反向代理的配置。
那剩下的问题,就是反向代理,即上图中 Proxy 的实现。
一种实现
Kubernetes 集群节点实现服务反向代理的方法,目前主要有三种,即 userspace、iptables 以及 IPVS。今天我们只深入分析 iptables 的方式,底层网络基于阿里云 Flannel 集群网络。
过滤器框架
现在,我们来设想一种场景。我们有一个屋子。这个屋子有一个入水管和出水管。从入水管进入的水,是不能直接饮用的,因为有杂质。而我们期望,从出水管流出的水,可以直接饮用。为了达到目的,我们切开水管,在中间加一个杂质过滤器。
过了几天,我们的需求变了,我们不止要求从屋子里流出来的水可以直接饮用,我们还希望水是热水。所以我们不得不再在水管上增加一个切口,然后增加一个加热器。
很明显,这种切开水管,增加新功能的方式是很丑陋的。因为需求可能随时会变,我们甚至很难保证,在经过一年半载之后,这跟水管还能找得到可以被切开的地方。
所以我们需要重新设计。首先我们不能随便切开水管,所以我们要把水管的切口固定下来。以上边的场景为例,我们确保水管只能有一个切口位置。其次,我们抽象出对水的两种处理方式:物理变化和化学变化。
基于以上的设计,如果我们需要过滤杂质,就可以在化学变化这个功能模块里增加一条过滤杂质的规则;如果我们需要增加温度的话,就可以在物理变化这个功能模块里增加一条加热的规则。
以上的过滤器框架,显然比切水管的方式,要优秀很多。设计这个框架,我们主要做了两件事情,一个是固定水管切口位置,另外一个是抽象出两种水处理方式。
理解这两件事情之后,我们可以来看下 iptables,或者更准确的说法,netfilter 的工作原理。netfilter 实际上就是一个过滤器框架。netfilter 在网络包收发及路由的管道上,一共切了 5 个口,分别是 PREROUTING,FORWARD,POSTROUTING,INPUT 以及 OUTPUT;同时 netfilter 定义了包括 nat、filter 在内的若干个网络包处理方式。
需要注意的是,routing 和 forwarding 很大程度上增加了以上 netfilter 的复杂程度,如果我们不考虑 routing 和 forwarding,那么 netfilter 会变得跟我们的水质过滤器框架一样简单。
节点网络大图
现在我们看一下 Kubernetes 集群节点的网络全貌。横向来看,节点上的网络环境,被分割成不同的网络命名空间,包括主机网络命名空间和 Pod 网络命名空间;纵向来看,每个网络命名空间包括完整的网络栈,从应用到协议栈,再到网络设备。
在网络设备这一层,我们通过 cni0 虚拟网桥,组建出系统内部的一个虚拟局域网。Pod 网络通过 veth 对连接到这个虚拟局域网内。cni0 虚拟局域网通过主机路由以及网口 eth0 与外部通信。
在网络协议栈这一层,我们可以通过编程 netfilter 过滤器框架,来实现集群节点的反向代理。
实现反向代理,归根结底,就是做 DNAT,即把发送给集群服务 IP 和端口的数据包,修改成发给具体容器组的 IP 和端口。
参考 netfilter 过滤器框架的图,我们知道,在 netfilter 里,可以通过在 PREROUTING,OUTPUT 以及 POSTROUGING 三个位置加入 NAT 规则,来改变数据包的源地址或目的地址。
因为这里需要做的是 DNAT,即改变目的地址,这样的修改,必须在路由(ROUTING)之前发生以保证数据包可以被路由正确处理,所以实现反向代理的规则,需要被加到 PREROUTING 和 OUTPUT 两个位置。
其中,PREOURTING 的规则,用来处理从 Pod 访问服务的流量。数据包从 Pod 网络 veth 发送到 cni0 之后,进入主机协议栈,首先会经过 netfilter PREROUTING 来做处理,所以发给服务的数据包,会在这个位置做 DNAT。经过 DNAT 处理之后,数据包的目的地址变成另外一个 Pod 的地址,从而经过主机路由,转发到 eth0,发送给正确的集群节点。
而添加在 OUTPUT 这个位置的 DNAT 规则,则用来处理从主机网络发给服务的数据包,原理也是类似,即经过路由之前,修改目的地址,以方便路由转发。
升级过滤器框架
在过滤器框架一节,我们看到 netfilter 是一个过滤器框架。netfilter 在数据“管到”上切了 5 个口,分别在这 5 个口上,做一些数据包处理工作。虽然固定切口位置以及网络包处理方式分类已经极大的优化了过滤器框架,但是有一个关键的问题,就是我们还是得在管道上做修改以满足新的功能。换句话说,这个框架没有做到管道和过滤功能两者的彻底解耦。
为了实现管道和过滤功能两者的解耦,netfilter 用了表这个概念。表就是 netfilter 的过滤中心,其核心功能是过滤方式的分类(表),以及每种过滤方式中,过滤规则的组织(链)。
把过滤功能和管道解耦之后,所有对数据包的处理,都变成了对表的配置。而管道上的5个切口,仅仅变成了流量的出入口,负责把流量发送到过滤中心,并把处理之后的流量沿着管道继续传送下去。
如上图,在表中,netfilter 把规则组织成为链。表中有针对每个管道切口的默认链,也有我们自己加入的自定义链。默认链是数据的入口,默认链可以通过跳转到自定义链来完成一些复杂的功能。这里允许增加自定义链的好处是显然的。为了完成一个复杂过滤功能,比如实现 Kubernetes 集群节点的反向代理,我们可以使用自定义链来模块化我们规则。
用自定义链实现服务的反向代理
集群服务的反向代理,实际上就是利用自定义链,模块化地实现了数据包的 DNAT 转换。KUBE-SERVICE 是整个反向代理的入口链,其对应所有服务的总入口;KUBE-SVC-XXXX 链是具体某一个服务的入口链,KUBE-SERVICE 链会根据服务 IP,跳转到具体服务的 KUBE-SVC-XXXX 链;而 KUBE-SEP-XXXX 链代表着某一个具体 Pod 的地址和端口,即 endpoint,具体服务链 KUBE-SVC-XXXX 会以一定算法(一般是随机),跳转到 endpoint 链。
而如前文中提到的,因为这里需要做的是 DNAT,即改变目的地址,这样的修改,必须在路由之前发生以保证数据包可以被路由正确处理。所以 KUBE-SERVICE 会被 PREROUTING 和 OUTPUT 两个默认链所调用。
总结
通过这篇文章,大家应该对 Kubernetes 集群服务的概念以及实现,有了更深层次的认识。我们基本上需要把握三个要点:
服务本质上是负载均衡;
服务负载均衡的实现采用了与服务网格类似的 Sidecar 的模式,而不是 LVS 类型的独占模式;
kube-proxy 本质上是一个集群控制器。除此之外,我们思考了过滤器框架的设计,并在此基础上,理解使用 iptables 实现的服务负载均衡的原理。
本文作者:声东 阿里云售后技术专家
原文链接:https://yq.aliyun.com/articles/719095?utm_content=g_1000077703
本文为云栖社区原创内容,未经允许不得转载。
分享到:
相关推荐
内容概要:本文介绍了一款基于MATLAB GUI的学生成绩管理系统,旨在提升学校教学管理的效率和准确性。系统主要由三个模块组成:考试收录数据模块、考试数据分析模块和统计分析数据模块。它不仅支持成绩的录入、显示、排序、查找,还包括特征值分析、直方图绘制和教师评语录入等功能。通过对成绩数据的综合分析,系统能为学校教学管理提供客观科学的数据支持。 适合人群:教育工作者(如教师、管理人员)和技术爱好者(特别是对MATLAB GUI感兴趣的开发者)。 使用场景及目标:适用于各类学校和教育机构,用于管理和分析学生成绩,帮助教师和管理者更好地了解学生的学习状况,改进教学质量。 阅读建议:对于希望深入了解如何利用MATLAB GUI进行学生成绩管理的读者来说,本文提供了详细的系统设计思路和功能实现方法,值得仔细研读并尝试实践。
内容概要:本文介绍了基于T-Mats库的涡扇发动机气路故障仿真模型,涵盖了多种类型的故障植入(如部件流量、效率及压比故障),并允许自定义故障程序和组合。该模型通过对软阈值去噪处理后的信号序列进行分析,提取真实的运行扰动信息,确保输出数据符合CMAPASS的排列要求。此外,该模型能够模拟航空发动机的典型气路故障,帮助研发和技术人员更准确地预测和评估发动机性能,从而提前采取预防措施。 适合人群:航空航天领域的研发人员、技术人员以及对航空发动机故障仿真感兴趣的学者。 使用场景及目标:①用于研究和开发涡扇发动机的气路故障诊断系统;②辅助工程师进行故障预测和性能评估;③为后续数据分析和实验验证提供可靠的数据基础。 其他说明:该模型不仅提高了仿真的准确性,还增强了对发动机运行状态的理解,为提升发动机性能和可靠性提供了强有力的技术支持。
scratch少儿编程逻辑思维游戏源码-scratch冒险.zip
少儿编程scratch项目源代码文件案例素材-爬塔.zip
内容概要:本文详细探讨了合金凝固模型中的相场模拟方法及其在各向异性枝晶生长研究中的应用。首先介绍了合金凝固模型的基本概念及其在现代制造业中的重要性,特别是在激光增材制造、选择性激光熔融和定向凝固技术中的应用。接着,重点讨论了相场模拟作为一种数值模拟方法,在预测合金凝固过程中组织结构演变方面的关键作用。文中还提供了MATLAB实现合金各向异性枝晶生长的具体代码及详细注释,以及Comsol用于偏微分方程求解的雪花生长模型。最后,文章总结了当前的研究进展,并展望了未来的发展趋势。 适合人群:从事材料科学、冶金工程、激光增材制造领域的研究人员和技术人员,尤其是对相场模拟和合金凝固感兴趣的学者。 使用场景及目标:适用于希望深入了解合金凝固过程、相场模拟方法及其在现代制造技术中应用的专业人士。目标是提高对合金凝固机制的理解,优化制造工艺,提升产品质量。 其他说明:文章不仅提供了理论分析,还包括具体的代码实现和详细的文献参考资料,有助于读者全面掌握相关技术和最新研究进展。
少儿编程scratch项目源代码文件案例素材-史莱姆出击.zip
少儿编程scratch项目源代码文件案例素材-忍者酷跑.zip
scratch少儿编程逻辑思维游戏源码-点击灌篮.zip
内容概要:本文介绍了将基于RBF神经网络的PID控制器应用于永磁同步电机(PMSM)转速环控制的方法及其性能优势。传统的PID控制器在面对非线性和时变系统时存在参数整定困难的问题,而引入RBF神经网络可以实现实时在线调参,提高系统的灵活性和鲁棒性。文中详细描述了Simulink模型的设计,特别是Matlab s-function模块中RBF神经网络的具体实现,包括高斯函数激活和带惯性的权值更新机制。实验结果显示,在转速突变情况下,改进后的控制器能够迅速稳定系统,超调量控制在2%以内,调节时间较传统方法缩短约40%,并且在负载变化时表现出色,无需重新整定参数。 适合人群:从事电机控制系统研究和开发的技术人员,尤其是对PID控制器优化感兴趣的工程师。 使用场景及目标:适用于需要提升PMSM转速环控制精度和响应速度的应用场合,如工业自动化设备、机器人等领域。目标是通过引入智能算法解决传统PID控制器参数整定难题,提高系统性能。 阅读建议:关注RBF神经网络与PID控制器结合的具体实现细节,特别是在Matlab s-function模块中的编码技巧以及参数调整策略。同时,注意学习率的选择和动量项的作用,这对于实际应用至关重要。
scratch少儿编程逻辑思维游戏源码-Scratch 奔跑.zip
内容概要:本文详细介绍了基于COMSOL有限元软件的变压器辐射传热数值分析方法。首先,解释了变压器内外辐射传热的基本机理,包括热量通过传导、对流和辐射的方式传递,重点在于辐射传热的作用及其数学描述。接着,逐步引导读者从零开始构建有限元仿真模型,涵盖模型参数确定、网格划分、材料属性定义、边界条件设置、传热方程设定、仿真运行及结果分析等多个步骤。最后,探讨了进一步研究的方向,如不同因素(温度、材料属性、几何形状)对辐射传热的影响,以及该模型在电力电子设备和热管理系统的潜在应用。 适合人群:电气工程专业学生、初学者和技术爱好者,尤其是对有限元仿真和变压器辐射传热感兴趣的群体。 使用场景及目标:适用于希望通过实际操作掌握有限元仿真技能的人群,旨在帮助他们理解变压器辐射传热机制并能独立完成相关仿真项目。 其他说明:本文不仅提供了理论知识,还附带了详细的视频教程和仿真模型,使学习过程更加直观易懂。
内容概要:本文详细介绍了交错并联Boost PFC(功率因数校正)仿真电路模型的设计与实现,特别是在临界BCM模式下的双闭环控制特性。文章首先解释了该电路的经典结构及其优势,即能够有效降低开关损耗和电流纹波。接着,重点讨论了双闭环控制的具体实现方法,包括外环电压控制和内环电流控制的MATLAB/Simulink代码示例。文中还特别强调了电流环中零交叉检测的重要性以及交错并联结构中驱动信号相位差的精确设置。此外,作者分享了将模型从Simulink转换到Plecs和Psim时遇到的问题及解决方案,如更换为带反向恢复特性的二极管模型和重新校准控制环路的采样周期。最后,文章展示了优化后的电流波形图,验证了所提方法的有效性。 适合人群:电力电子工程师、电源设计师、从事电力系统仿真的研究人员和技术爱好者。 使用场景及目标:适用于需要进行高效电源设计的研究和开发项目,旨在提高电源系统的性能,减少谐波失真,提升功率因数校正效果。 其他说明:文中提供的具体代码片段和参数设置有助于读者更好地理解和复现实验结果。同时,对于希望深入理解双闭环控制系统和BCM模式的人来说,本文提供了宝贵的实践经验。
scratch少儿编程逻辑思维游戏源码-3000 横版闯过.zip
内容概要:本文介绍了如何利用Matlab/Simulink构建空气涡轮发动机的动态仿真模型。首先,文章详细阐述了各个部件级模型的设计,包括进气道、涡轮、气室、压气机、尾喷管、转子动力学模块和容积模块。接着,重点讨论了PID控制器在维持发动机转速恒定方面的作用,尤其是在面对输出扭矩阶跃扰动时的表现。最后,提供了简单的Simulink模型代码片段,展示了如何设置和运行仿真模型,以便实时监控和调整发动机性能。 适合人群:航空航天工程领域的研究人员和技术人员,尤其是那些对空气涡轮发动机仿真感兴趣的读者。 使用场景及目标:适用于希望通过Matlab/Simulink进行空气涡轮发动机仿真研究的专业人士。主要目标是掌握空气涡轮发动机各部件的工作原理及其相互关系,同时学会使用PID控制器优化发动机性能。 其他说明:本文不仅提供了理论知识,还附有实际操作步骤和代码示例,帮助读者更好地理解和应用所学内容。
少儿编程scratch项目源代码文件案例素材-收集能量.zip
scratch少儿编程逻辑思维游戏源码-弹回的球.zip
少儿编程scratch项目源代码文件案例素材-铅笔画.zip
Sage Decrypter.zip
scratch少儿编程逻辑思维游戏源码-躲避火箭.zip
KEPServerEX6-6.17.269.0,最新版