- 浏览: 170002 次
- 性别:
- 来自: 广州
博客专栏
-
TCP/IP详解卷一>阅读...
浏览量:12571
文章分类
最新评论
-
master11:
你好,博主看完你的解释,好厉害啊!!佩服。如果想运行看一下效果 ...
数独人工解法的一些技巧及其python实现 -
evasiu:
chenxun1012033254 写道lz这么辛苦我也是醉了 ...
数独人工解法的一些技巧及其python实现 -
chenxun1012033254:
lz这么辛苦我也是醉了作为一名oier我说有一个算法叫做dan ...
数独人工解法的一些技巧及其python实现 -
xuyfiei:
lz很厉害,现在该是毕业了吧
恨毕业--读研一年总结 -
nphoenix:
呵呵 肯踏實的學東西已經很不錯了。畢業了工作之後,你就會發現個 ...
恨毕业--读研一年总结
在《基于树的索引结构介绍》(http://philoscience.iteye.com/admin/blogs/1112759)中提到了二分查找树及其改进版本AVL树(平衡二叉树)。二分查找树比较简单,但是很容易产生不平衡的问题而丧失了二分查找树的优势,AVL树规定了左右孩子树的高度差超过1则为不平衡,为了维持平衡,在插入和删除子节点后,必须进行相应的旋转。还有一种著名的红黑树,红黑树放宽了平衡的要求,从而减少了操作的次数。最后还有伸展树(splay tree,好像也有叫自组织树的),它与我们前面介绍过的自组织链表中的moveToFront策略是一样的,不过用的数据结构不再是链表,而是二叉树。这几天通过亲身实现了这几种二叉树以及调试,了解了其中的很多细节,对其思想也算是有所掌握了。
因为打算后面还要实现多种树,所以先写了一个树的虚类,要实现的功能包括有insert,remove,search以及print,当然还有析构函数。
template<class Elem, class Key, class KEComp, class EEComp> class Tree{ protected: int count; Tree( int c=0 ){ count = c; } virtual ~Tree(){}; public: virtual bool insert( const Elem& )=0; //search本来应该是const成员函数的,可是后面的splaytree在search过后 //还要进行翻转,没办法是const的,不知道在设计上应该怎么做比较好。 virtual bool search( const Key&, Elem& ) =0; virtual bool remove( const Key&, Elem& ) =0; virtual void print() const =0; int size(){ return count; } };
二分查找树的实现:
//BSTTree.h #ifndef BSTTREE_H #define BSTTREE_H template<class Elem, class Key, class KEComp, class EEComp> class BST : public Tree<Elem, Key, KEComp, EEComp>{ protected: struct BinNode{ Elem e; BinNode* left; BinNode* right; BinNode( Elem ee, BinNode* l=0, BinNode* r=0 ){ e = ee; left = l; right = r; } }; using Tree<Elem, Key, KEComp, EEComp>::count; BinNode* root; private: void printHelp( BinNode* subroot, int level ) const; void clear( BinNode* subroot ); public: BST(){ root = 0; } ~BST(){ clear( root ); } virtual bool search( const Key& k, Elem& e ); virtual bool insert( const Elem& e ); virtual bool remove( const Key& k, Elem& e ); //it's hard to print it non recursively.... virtual void print() const{ if( root == 0 ) cout<<"empty tree"<<endl; else printHelp( root, 0 ); } }; #include "BSTTree.cpp" #endif
//BSTTree.cpp template<class Elem, class Key, class KEComp, class EEComp> void BST<Elem, Key, KEComp, EEComp>:: printHelp( BinNode* subroot, int level ) const{ if( subroot == 0 ){ return; } printHelp( subroot->left, level+1 ); for( int i=0; i<level; i++ ) cout<<"___"; cout<<subroot->e<<endl; printHelp( subroot->right, level+1 ); } template<class Elem, class Key, class KEComp, class EEComp> void BST<Elem, Key, KEComp, EEComp>:: clear( BinNode* subroot ){ if( subroot == 0 ) return; clear( subroot->left ); clear( subroot->right ); delete subroot; } //non recursive implementation template<class Elem, class Key, class KEComp, class EEComp> bool BST<Elem, Key, KEComp, EEComp>:: search( const Key& k, Elem& e ) { BinNode* p = root; while( p != 0 ){ if( KEComp::eq( k, p->e ) ){ e = p->e; return true; } if( KEComp::lt( k, p->e ) ) p = p->left; else p = p->right; } return false; } template<class Elem, class Key, class KEComp, class EEComp> bool BST<Elem, Key, KEComp, EEComp>:: insert( const Elem& e ){ BinNode* p = root, *i=0; while( p!=0 ){ i = p; if( EEComp::lt( e, p->e ) ) p = p->left; else p = p->right; } p = new BinNode( e ); if( i == 0 ) root = p; else{ if( EEComp::lt( e, i->e ) ) i->left = p; else i->right = p; } count++; return true; } template<class Elem, class Key, class KEComp, class EEComp> bool BST<Elem, Key, KEComp, EEComp>:: remove( const Key& k, Elem& e ){ BinNode* p = root, *i=0; while( p!=0 ){ if( KEComp::eq( k, p->e ) ) break; i = p; if( KEComp::lt( k, p->e ) ) p = p->left; else p = p->right; } if( p == 0 ) return false; e = p->e; BinNode* removeP = p; if( p->right != 0 ){ removeP = p->right; i = p; while( removeP->left != 0 ){ i = removeP; removeP = removeP->left; } p->e = removeP->e; } if( i == 0 ) root = removeP->left; else{ if( i->left == removeP ) i->left = (removeP->left==0 ? removeP->right : removeP->left); else i->right = (removeP->right==0 ? removeP->left :removeP->right); } delete removeP; count--; return true; }
AVL树比BST在插入和删除元素的时候多了一个旋转的操作。一开始的时候说什么时候只需要旋转一次,什么时候需要旋转两次的,后来想明白了,其实大致可以用下图来表示:
因此第二种情况下必须先把C转到B的位置使祖孙三人成一条直线,然后再做一次旋转。
AVL树的结点将比BST树的结点多一个记录高度的信息,以便在插入删除的时候确定是否需要进行旋转。因为没有记录爷结点的信息,所以是用递归实现的。
//AVLTree.h #ifndef AVLTREE_H #define AVLTREE_H template<class Elem, class Key, class KEComp, class EEComp> class AVLTree : public BST<Elem, Key, KEComp, EEComp>{ protected: typedef typename BST<Elem, Key, KEComp, EEComp>::BinNode BSTNode; using BST<Elem, Key, KEComp, EEComp>::count; using BST<Elem, Key, KEComp, EEComp>::root; struct HeightBinNode : public BSTNode{ int height; HeightBinNode( Elem ee, HeightBinNode* l=NULL, HeightBinNode* r=NULL, int h=1 ):BSTNode(ee, l, r){ height = h; } }; private: //return the height of a subtree, if the subroot is null, return 0; int Height( HeightBinNode* t ){ if( t == NULL ) return 0; return t->height; } Key (*getKey)(const Elem& e ); //insert into the left subtree of subroot's left child HeightBinNode* rotateL( HeightBinNode* subroot ); //insert into the right subtree of subroot's right child HeightBinNode* rotateR( HeightBinNode* subroot ); //return a subroot which is modified by an inserted/removed element HeightBinNode* insertHelp( const Elem& e, HeightBinNode* subroot ); HeightBinNode* removeHelp( HeightBinNode* subroot, const Key& k, HeightBinNode*& t ); public: AVLTree( Key (*g)(const Elem& e) ):BST<Elem, Key, KEComp, EEComp>(){ getKey = g; } //since it's really hard to implement insert without recursion, //I decide to realize it recursively bool insert( const Elem& e ){ (HeightBinNode*)root = insertHelp( e, (HeightBinNode*)root ); if( root == NULL ) return false; count++; return true; } bool remove( const Key& k, Elem& e ){ HeightBinNode* t=0; root = removeHelp( (HeightBinNode*)root, k, t ); if( t == NULL ) return false; e = t->e; delete t; count--; return true; } }; #include "AVLTree.cpp" #endif
//AVLTree.cpp template<class Elem, class Key, class KEComp, class EEComp> typename AVLTree<Elem, Key, KEComp, EEComp>::HeightBinNode* AVLTree<Elem, Key, KEComp, EEComp>:: rotateL( HeightBinNode* subroot ){ HeightBinNode* alter_root = (HeightBinNode*)subroot->left; HeightBinNode* leftChild = (HeightBinNode* )alter_root->left, *rightChild = (HeightBinNode*) alter_root->right; if( Height(leftChild)-Height(rightChild) == -1 ) alter_root = rotateR( alter_root ); subroot->left = (HeightBinNode*)alter_root->right; alter_root->right = subroot; leftChild = (HeightBinNode*)subroot->left; rightChild = (HeightBinNode*)subroot->right; subroot->height = (Height(leftChild) > Height(rightChild) ? Height(leftChild):Height(rightChild))+1; leftChild = (HeightBinNode*)alter_root->left; rightChild = (HeightBinNode*)alter_root->right; alter_root->height = (Height(leftChild) > Height(rightChild) ? Height(leftChild):Height(rightChild))+1; return alter_root; } template<class Elem, class Key, class KEComp, class EEComp> typename AVLTree<Elem, Key, KEComp, EEComp>::HeightBinNode* AVLTree<Elem, Key, KEComp, EEComp>:: rotateR( HeightBinNode* subroot ){ HeightBinNode* alter_root = (HeightBinNode*)subroot->right; HeightBinNode* leftChild, *rightChild; leftChild = (HeightBinNode*) alter_root->left; rightChild=(HeightBinNode*)alter_root->right; if( Height(leftChild)-Height(rightChild) == 1 ) alter_root = rotateL( alter_root ); subroot->right = alter_root->left; alter_root->left = subroot; leftChild = (HeightBinNode*)subroot->left, rightChild=(HeightBinNode*)subroot->right; subroot->height = (Height(leftChild)>Height(rightChild) ? Height(leftChild) : Height(rightChild))+1; leftChild = (HeightBinNode*)alter_root->left, rightChild = (HeightBinNode*)alter_root->right; alter_root->height = (Height(leftChild)>Height(rightChild) ? Height(leftChild) : Height(rightChild))+1; return alter_root; } template<class Elem, class Key, class KEComp, class EEComp> typename AVLTree<Elem, Key, KEComp, EEComp>::HeightBinNode* AVLTree<Elem, Key, KEComp, EEComp>:: insertHelp( const Elem& e, HeightBinNode* subroot ){ if( subroot == NULL ){ subroot = new HeightBinNode(e); return subroot; }else{ HeightBinNode* leftChild, *rightChild; leftChild = (HeightBinNode*)subroot->left; rightChild = (HeightBinNode*)subroot->right; if( EEComp::lt( e, subroot->e ) ){ leftChild = insertHelp( e, leftChild ); subroot->left = leftChild; if( Height(leftChild)-Height(rightChild) == 2 ) subroot = rotateL( subroot ); }else{ rightChild = insertHelp( e, rightChild ); subroot->right = rightChild; if( Height(leftChild)-Height(rightChild) == -2 ) subroot = rotateR( subroot ); } subroot->height = (Height(leftChild)>Height(rightChild) ? Height(leftChild) : Height(rightChild))+1; return subroot; } } template<class Elem, class Key, class KEComp, class EEComp> typename AVLTree<Elem, Key, KEComp, EEComp>::HeightBinNode* AVLTree<Elem, Key, KEComp, EEComp>:: removeHelp( HeightBinNode* subroot, const Key& k, HeightBinNode*& t ){ if( subroot == NULL ) return NULL; HeightBinNode* leftChild, *rightChild; if( KEComp::eq( k, subroot->e ) ){ t = subroot; if( subroot->right == NULL ){ subroot = (HeightBinNode*)subroot->left; }else{ BSTNode* temp = subroot->right; while( temp->left != NULL ) temp = temp->left; Elem te; te = subroot->e; subroot->e = temp->e; temp->e = te; subroot->right = removeHelp( (HeightBinNode*)subroot->right, getKey(temp->e), t ); leftChild = (HeightBinNode*)subroot->left; rightChild = (HeightBinNode*)subroot->right; subroot->height =( Height(leftChild)>Height(rightChild) ? Height(leftChild):Height(rightChild))+1; } return subroot; }else{ if( KEComp::lt( k, subroot->e ) ){ subroot->left = removeHelp( (HeightBinNode*)subroot->left, k, t ); leftChild = (HeightBinNode*)subroot->left; rightChild = (HeightBinNode*)subroot->right; if( Height(leftChild)-Height(rightChild) == -2 ) subroot = rotateR( subroot ); }else{ subroot->right = removeHelp( (HeightBinNode*)subroot->right, k, t ); leftChild = (HeightBinNode*)subroot->left; rightChild = (HeightBinNode*)subroot->right; if( Height(leftChild)-Height(rightChild) == 2 ) subroot = rotateL( subroot ); } } leftChild = (HeightBinNode*)subroot->left; rightChild = (HeightBinNode*)subroot->right; subroot->height = (Height(leftChild)>Height(rightChild) ? Height(leftChild) : Height(rightChild))+1; return subroot; }
AVL树用高度来识别树的平衡程度,而红黑树则是用颜色来识别树的平衡。红黑树使用红色或者黑色来标识一个结点,一棵合法的树必须满足如下规则:
(1)树根是黑色的;
(2)空结点是黑色的;
(3)红色的父节点不能有红色的孩子结点
(4)从树根到所有叶子(空结点)的黑色结点的数目必须是相等的,从树根到叶子结点的黑色结点的数目称为树的黑高度(所有的子树也同样是一棵红黑树)。
对于插入一个结点,除了根结点外,结点必须是红色的,不然的话根到经过该结点到达空叶子结点的数目必然会比其他路径的增加一,这将违反规则4;但是如果这个时候插入结点的地方的父节点也是红色的,又会违反规则3.解决的办法是重新着父结点的颜色,将不平衡点往上推,直到最后到了根结点,根结点一定为黑;或者通过旋转降低子树的高度以同时降低子树的黑高度。具体要视叔结点的颜色而定。如下图:
删除一个结点时,我们知道,如果删除的结点左右孩子都不为空的话,我们不会直接删除该结点,而是从其孩子结点中找到大于它的最小结点(或小于它的最大结点),根据这种思想递归下去,对于物理上将被删除的结点,我们可能断定,它最多只有一个不为空的孩子,而根据结黑树的特点,如果它有一个不为空的孩子,该孩子一定为红色。总结起来,删除的结点有如下的特点:
(1)该结点没有孩子结点或只有一个红色的孩子结点
(2)如果被删除的结点是红色的,它一定是一个叶子结点。
因此,根据被删除结点的情况,删除完结点后相应的调整如下:
(1)如果被删除的结点是红色的,无须做任何调整,因为它没有影响树的黑高度。
(2)如果被删除的结点是黑色的,且其有一个孩子结点。我们知道此时该孩子结点一定为红色,因此,我们可以直接将该孩子结点染成黑色的,整体的黑高度也没有发生变化。
(3)如果被删除的结点是黑色的,其孩子结点均为空(即黑色结点)。删除该结点使经过该结点的路径的黑高度减少了一,接替该结点的位置的也将是一个黑色的新结点,这个时候,跟插入一个新的结点一样,我们要通过改变着色将冲突往上移,或者通过旋转来改变高度从而改变黑高度,因此下面的讨论就不再局限于新插入的结点。
我觉得关于红黑树这篇文章讲得很详细http://www.cppblog.com/goodwin/archive/2011/08/08/152797.html。
下面是我的代码:
//RBTree.h #ifndef RBTREE_H #define RBTREE_H template<class Elem, class Key, class KEComp, class EEComp> class RBTree : public BST<Elem, Key, KEComp, EEComp>{ protected: typedef enum{ BLACK,RED } Color; typedef typename BST<Elem, Key, KEComp, EEComp>::BinNode BSTNode; using BST<Elem, Key, KEComp, EEComp>::count; using BST<Elem, Key, KEComp, EEComp>::root; struct RBNode : public BSTNode{ Color color; RBNode* parent; RBNode( Elem ee, RBNode* l=0, RBNode* r=0, RBNode* p=0, Color cc=RED ):BSTNode( ee, l, r ){ parent = p; color = cc; } }; void rotateL( RBNode* ); void rotateR( RBNode* ); void insertFixUp( RBNode* ); void removeFixUp( RBNode* ); /*测试用 void printHelp( RBNode* subroot, int level ) const{ if( subroot == 0 ) return; printHelp( (RBNode*)subroot->left, level+1); for( int i=0; i<level; i++ ) cout<<"___"; if( subroot->color == BLACK ) cout<<"("<<subroot->e<<")"<<endl; else cout<<"|"<<subroot->e<<"|"<<endl; printHelp( (RBNode*)subroot->right, level+1 ); }*/ public: RBTree(){ //很多实现都利用了一个nilNode来做哨兵,为了利用BST的打印和删除, //这里没有进行这样的实现 // nilNode = new RBNode(); // root = nilNode; } ~RBTree(){ // delete nilNode; } bool insert( const Elem& e ); bool remove( const Key& k, Elem& e ); /*void print() const{ printHelp( (RBNode*)root, 0 ); }*/ }; #include "RBTree.cpp" #endif
//RBTree.cpp template<class Elem, class Key, class KEComp, class EEComp> bool RBTree<Elem, Key, KEComp, EEComp>::insert( const Elem& e ){ if( root == 0 ){ root = new RBNode( e ); ((RBNode*)root)->color = BLACK; count ++; return true; } RBNode *current=(RBNode*)root, *insertP; while( current != 0 ){ insertP = current; if( EEComp::lt( e, current->e ) ) current = (RBNode*)current->left; else current = (RBNode*)current->right; }; RBNode* insertNode = new RBNode( e ); insertNode->parent = insertP; if( EEComp::lt( e, insertP->e ) ) insertP->left = insertNode; else insertP->right = insertNode; count ++; insertFixUp( insertNode ); } template<class Elem, class Key, class KEComp, class EEComp> void RBTree<Elem, Key, KEComp, EEComp>:: rotateL( RBNode* subroot ){ if( subroot == 0 || subroot->left == 0 ) return; RBNode* leftChild = (RBNode*)subroot->left; RBNode *rightChild = (RBNode*)leftChild->right; leftChild->parent = subroot->parent; if( subroot->parent == 0 ) root = leftChild; else{ if( subroot->parent->left == subroot ) subroot->parent->left = leftChild; else subroot->parent->right = leftChild; } leftChild->right = subroot; subroot->parent=leftChild; subroot->left = rightChild; if( rightChild != 0 ) rightChild->parent = subroot; } template<class Elem, class Key, class KEComp, class EEComp> void RBTree<Elem, Key, KEComp, EEComp>:: rotateR( RBNode* subroot ){ if( subroot == 0 || subroot->right == 0 ) return; RBNode* rightChild = (RBNode*)subroot->right; RBNode* leftChild = (RBNode*)rightChild->left; rightChild->parent = subroot->parent; if( subroot->parent == 0 ) root = rightChild; else{ if( subroot->parent->left == subroot ) subroot->parent->left = rightChild; else subroot->parent->right = rightChild; } rightChild->left = subroot; subroot->parent = rightChild; subroot->right = leftChild; if( leftChild != 0 ) leftChild->parent = subroot; } template<class Elem, class Key, class KEComp, class EEComp> void RBTree<Elem, Key, KEComp, EEComp>:: insertFixUp( RBNode* current ){ while( current->parent != 0 && current->parent->color == RED ){ RBNode* uncle; if( current->parent == current->parent->parent->left ){ uncle = (RBNode*)current->parent->parent->right; if( uncle !=0 && uncle->color == RED ){ current->parent->color = BLACK; uncle->color = BLACK; current = current->parent->parent; current->color = RED; }else{ if( current == current->parent->right ){ current = current->parent; rotateR( current ); } current->parent->color = BLACK; current->parent->parent->color = RED; rotateL( current->parent->parent ); } }else{ uncle = (RBNode*)current->parent->parent->left; if( uncle != 0 && uncle->color == RED ){ current->parent->color = BLACK; uncle->color = BLACK; current = current->parent->parent; current->color = RED; }else{ if( current == current->parent->left ){ current = current->parent; rotateL( current ); } current->parent->color = BLACK; current->parent->parent->color = RED; rotateR( current->parent->parent ); } } } ((RBNode*)root)->color = BLACK; } template<class Elem, class Key, class KEComp, class EEComp> bool RBTree<Elem, Key, KEComp, EEComp>:: remove( const Key& k, Elem& e ){ RBNode* index=(RBNode*)root, *removeNode=0; //get the node to be removed while( index != 0 ){ if( KEComp::eq( k, index->e ) ){ e = index->e; if( index->right == 0 ){ removeNode = index; break; }else{ BSTNode* temp = index->right; while( temp->left != 0 ) temp = temp->left; removeNode = (RBNode*)temp; index->e = temp->e; break; } } if( KEComp::lt( k, index->e ) ) index = (RBNode*)index->left; else index = (RBNode*)index->right; } if( removeNode == 0 ) return false; //没有使用哨兵的结果还是挺严重的,代码写得很不简洁。 if( removeNode->color == RED ){ //red child is a leaf if( removeNode->parent->left == removeNode ) removeNode->parent->left = 0; else removeNode->parent->right = 0; }else{ if( removeNode == root ){ root = removeNode->left; if( root != 0 ) ((RBNode*)root)->color = BLACK; } else{ RBNode* child=0; if( removeNode->left != 0 ) child = (RBNode*)removeNode->left; else child = (RBNode*)removeNode->right; RBNode* temp=0; if ( child == 0 ){ temp = new RBNode(e); child = temp; child->color = BLACK; child->parent = removeNode->parent; } bool left; if( removeNode == removeNode->parent->left ){ left = true; removeNode->parent->left = child; } else{ removeNode->parent->right = child; left = false; } removeFixUp( child ); if( temp != 0 ){ if( left ) temp->parent->left = 0; else temp->parent->right = 0; delete temp; } } } delete removeNode; count --; return true; } template<class Elem, class Key, class KEComp, class EEComp> void RBTree<Elem, Key, KEComp, EEComp>:: removeFixUp( RBNode* current ){ while( current != root && current->color == BLACK ){ RBNode* uncle, *leftChild, *rightChild; if( current == current->parent->left ){ //left child uncle = (RBNode*)current->parent->right; //uncle is impossible to be null if( uncle->color == RED ){ current->parent->color = RED; uncle->color = BLACK; rotateL( current->parent ); uncle = (RBNode*)current->parent->right; } leftChild = (RBNode*)uncle->left; rightChild =(RBNode*)uncle->right; if( (leftChild==0||leftChild->color==BLACK) && (rightChild==0 || rightChild->color==BLACK) ){ uncle->color = RED; current = current->parent; }else{ if( leftChild!=0 && leftChild->color == RED ){ leftChild->color = BLACK; uncle->color = RED; rotateL( uncle ); uncle = (RBNode*)current->parent->right; } uncle->color = current->parent->color; current->parent->color = BLACK; ((RBNode*)uncle->right)->color = BLACK; rotateR( current->parent ); current = (RBNode*)root; } }else{ //right child, which is symmetric with left child uncle = (RBNode*)current->parent->left; if( uncle->color == RED ){ current->parent->color = RED; uncle->color = BLACK; rotateL( current->parent ); uncle = (RBNode*)current->parent->left; } leftChild = (RBNode*)uncle->left; rightChild = (RBNode*)uncle->right; if( (leftChild==0 || leftChild->color==BLACK) && (rightChild==0 || rightChild->color==BLACK) ){ uncle->color = RED; current = current->parent; }else{ if( rightChild->color == RED ){ uncle->color = RED; rightChild->color = BLACK; rotateR( uncle ); uncle = (RBNode*)current->parent->left; } uncle->color = current->parent->color; current->parent->color = BLACK; ((RBNode*)uncle->left)->color = BLACK; rotateL( current->parent ); current = (RBNode*)root; } } } current->color = BLACK; }
最后一种是splay树。Splay树是一种自组织树,跟MoveToFront的自组织链表一样,刚被搜索到的元素被转到树根,转的方法如下:
代码如下:
//BSTTree.h #ifndef BSTTREE_H #define BSTTREE_H template<class Elem, class Key, class KEComp, class EEComp> class BST : public Tree<Elem, Key, KEComp, EEComp>{ protected: struct BinNode{ Elem e; BinNode* left; BinNode* right; BinNode( Elem ee, BinNode* l=0, BinNode* r=0 ){ e = ee; left = l; right = r; } }; using Tree<Elem, Key, KEComp, EEComp>::count; BinNode* root; private: void printHelp( BinNode* subroot, int level ) const; void clear( BinNode* subroot ); public: BST(){ root = 0; } ~BST(){ clear( root ); } virtual bool search( const Key& k, Elem& e ); virtual bool insert( const Elem& e ); virtual bool remove( const Key& k, Elem& e ); //it's hard to print it non recursively.... virtual void print() const{ if( root == 0 ) cout<<"empty tree"<<endl; else printHelp( root, 0 ); } }; #include "BSTTree.cpp" #endif
//SplayTree.cpp template<class Elem, class Key, class KEComp, class EEComp> void SplayTree<Elem, Key, KEComp, EEComp>:: rotateL( SPNode* subroot ){ if( subroot == 0 || subroot->left == 0 ) return; SPNode* leftChild = (SPNode*)subroot->left, *rightChild = (SPNode*)leftChild->right; if( subroot == root ) root = leftChild; else{ if( subroot == subroot->parent->left ) subroot->parent->left = leftChild; else subroot->parent->right = leftChild; } leftChild->parent = subroot->parent; leftChild->right = subroot; subroot->parent = leftChild; subroot->left = rightChild; if( rightChild != 0 ) rightChild->parent = subroot; } template<class Elem, class Key, class KEComp, class EEComp> void SplayTree<Elem, Key, KEComp, EEComp>:: rotateR( SPNode* subroot ){ if( subroot == 0 || subroot->right == 0 ) return; SPNode* rightChild = (SPNode*)subroot->right, *leftChild =(SPNode*)rightChild->left; if( subroot == root ) root = rightChild; else{ if( subroot == subroot->parent->left ) subroot->parent->left = rightChild; else subroot->parent->right = rightChild; } rightChild->parent = subroot->parent; rightChild->left = subroot; subroot->right = leftChild; subroot->parent = rightChild; if( leftChild != 0 ) leftChild->parent = subroot; } template<class Elem, class Key, class KEComp, class EEComp> void SplayTree<Elem, Key, KEComp, EEComp>:: splay( SPNode* from, SPNode* to ){ //rotate from under to if( from == 0 ) return; while( from->parent != to ){ if( from->parent->parent == to ){ if( from == from->parent->left ) rotateL( from->parent ); else rotateR( from->parent ); } else{ SPNode* p=from->parent, *g=p->parent; if( from == (SPNode*)p->left ){ if( p == (SPNode*)g->left ){ rotateL( g ); rotateL( p ); }else{ rotateL( p ); rotateR( g ); } }else{ if( p == (SPNode*)g->right ){ rotateR( g ); rotateR( p ); }else{ rotateR( p ); rotateL( g ); } } } } } template<class Elem, class Key, class KEComp, class EEComp> bool SplayTree<Elem, Key, KEComp, EEComp>:: insert( const Elem& e ){ if( root == 0 ){ root = new SPNode( e ); ((SPNode*) root)->parent = 0; count ++; return true; } SPNode* index=(SPNode*)root, *insertP; while( index != 0 ){ insertP = index; if( EEComp::lt( e, index->e ) ) index = (SPNode*)index->left; else index = (SPNode*)index->right; } index = new SPNode( e ); index->parent = insertP; if( EEComp::lt( e, insertP->e ) ) insertP->left = index; else insertP->right = index; splay( index, 0 ); count++; return true; } template<class Elem, class Key, class KEComp, class EEComp> bool SplayTree<Elem, Key, KEComp, EEComp>:: remove( const Key& k, Elem& e ){ SPNode* removeP = (SPNode*)root; SPNode* splayP; while( removeP != 0 ){ if( KEComp::eq( k, removeP->e ) ){ e = removeP->e; splayP = removeP->parent; if( removeP->right == 0 && splayP !=0 ){ if( removeP == splayP->left ) splayP->left = removeP->left; else splayP->right = removeP->left; if( removeP->left != 0 ) ((SPNode*)removeP->left)->parent = splayP; }else{ SPNode* temp = (SPNode*)removeP->right; while( temp->left != 0 ) temp = (SPNode*)temp->left; temp->parent->left = temp->right; if( temp->right != 0 ) ((SPNode*)temp->right)->parent = temp->parent; removeP->e = temp->e; removeP = temp; } delete removeP; splay( splayP, 0 ); count--; return true; }else{ if( KEComp::lt( k, removeP->e ) ) removeP = (SPNode*)removeP->left; else removeP = (SPNode*)removeP->right; } } return false; } template<class Elem, class Key, class KEComp, class EEComp> bool SplayTree<Elem, Key, KEComp, EEComp>:: search( const Key& k, Elem& e ) const{ SPNode* searchP = (SPNode*)root; while( searchP != 0 ){ if( KEComp::eq( k, searchP->e ) ){ e = searchP->e; splay( searchP ); return true; }else{ if( KEComp::lt( k, searchP->e ) ) searchP = searchP->left; else searchP = searchP->right; } } return false; }
基本就是这些了。接下来再实现一下其他类型的树,呵呵。
发表评论
-
我对KM算法的理解
2012-12-26 15:47 25933一般对KM算法的描述, ... -
正则表达式的一些笔记
2012-08-16 23:30 01. 文字符号 1.1 特殊字符:[ ] \ ^ $ . | ... -
一个小题目(单词统计)
2012-08-14 23:12 1322今天休息的时候看到一个关于单词统计的小题目: 统计一段由字符 ... -
数独人工解法的一些技巧及其python实现
2012-06-13 16:31 6606这段日子实现了十几种 ... -
Eva'Sudoku-0.1新鲜出炉啦~~
2012-05-27 21:06 1335呵呵,经过将近一个星期的对pygame的了解与熟悉,我终于磕磕 ... -
产生数独迷题
2012-05-24 18:13 1969随着数独解题算法DLX的 ... -
解数独——dancing link X
2012-05-21 22:59 7983折腾了一个星期,发现 ... -
总共有多少个数独?
2012-05-12 15:31 12756憋屈地看了一个星期的 ... -
《算法引论》之算法分析
2012-04-26 14:01 1576上次写博客,已经是半个月之前了。我也不知道我这段日子在干嘛了, ... -
编程之美续
2012-04-06 15:37 1127看完编程之美后看很多题,都会发现原来只是里面一些题目的变种(也 ... -
编程之美
2012-04-02 16:54 1444前段日子又看了编程之美,后来闲着无聊学python去了,想着书 ... -
stl中的几个精美算法
2012-03-17 18:35 1167关于STL中的算法,我印象比较深刻的主要有用于list的sor ... -
STL和内存管理技术
2012-03-17 16:46 9740前段日子读了STL的源码 ... -
数据结构——2-3树
2012-02-10 14:25 7153年前实现了一个2-3树, ... -
编程珠玑--关于查找(二分法、自组织链、哈希)
2011-12-31 19:36 2110查找是我们现实生活中 ... -
编程珠玑 -- 关于堆
2011-12-28 15:31 1136堆是这样一种数据结构,它首先是一棵二叉树,而且还是一棵完全二叉 ... -
编程珠玑 -- 关于排序
2011-12-27 20:12 987《编程珠玑》主要提到 ... -
编程珠玑 -- 数据结构?
2011-12-21 21:15 663又开始看《编程珠玑》,发现之前看的也许不是很认真吧,再看一遍的 ... -
基于树的索引结构介绍
2011-07-01 17:59 2646转眼又七月份了。6月份后来就变成考试月了。因为图论要求写阅读报 ... -
Moment in Peking
2011-06-05 17:01 1031"Moment in Peking" wa ...
相关推荐
在数据结构的学习中,理解并掌握AVL树的概念、特性以及操作是至关重要的。 平衡二叉树的概念: 平衡二叉树的主要目标是解决普通二叉搜索树可能产生的高度不平衡问题,以提高查找、插入和删除操作的效率。在AVL树中...
"数据结构--二叉树--思维导图" 二叉树是一种常见的数据结构,它是一种树形结构,每个节点最多有两个孩子节点,分别是左子树和右子树。二叉树可以用来存储大量数据,并且可以快速地查找、插入和删除数据。 二叉树的...
数据结构---07---二叉树---20220506107---邹世豪.c
在IT领域,数据结构是计算机科学的基础,而二叉树作为一种重要的数据结构,广泛应用于搜索、排序、图形处理等场景。二叉树是由n(n≥0)个有限节点组成一个具有层次关系的集合,通常表现为一个有根的层次结构。每个...
二叉树是计算机科学中数据结构的一个重要概念,它在许多算法和问题解决中发挥着核心作用。在数据结构的世界里,二叉树是一种特殊的树形结构,其中每个节点最多有两个子节点,通常称为左子节点和右子节点。这种结构...
二叉树(Binary Tree)是一种重要的数据结构,在计算机科学中有广泛的应用。二叉树中的每个节点最多有两个子节点,分别称为左子节点和右子节点。在Java中实现二叉树时,可以通过数组或者链表来存储二叉树的数据。 ###...
平衡二叉树(Balanced Binary Tree)是数据结构中的一个重要概念,尤其在算法设计和数据库系统中发挥着关键作用。本实验是针对广东工业大学(简称“广工”)学生的一次数据结构课程实践,旨在让学生深入理解平衡...
数据结构中的二叉树是一种特殊的树形数据结构,它的每个节点最多只有两个子节点,分别称为左子节点和右子节点。二叉树的概念源于计算机科学,被广泛应用于算法设计和数据存储。以下是对二叉树相关知识的详细阐述: ...
数据结构中的一个c++工程———二叉树的存储与遍历的实现
数据结构-C语言-遍历二叉树
综上所述,"AVLtree_c_avl_平衡二叉树_avltree_"这个项目可能是用C语言实现了一个AVL树的数据结构,并提供了对树的增删改查操作,同时具备用户友好的交互界面。这个项目对于理解和实践AVL树的概念、操作和性能优化...
关于树和二叉树的一个课件,适用于数据结构初学者和选修数据结构课程的本科生
"算法大全-面试题-链表-栈-二叉树-数据结构"这个压缩包文件提供了丰富的知识资源,旨在帮助学习者深入理解和应用这些核心概念。 链表是一种线性数据结构,与数组不同,它的元素在内存中不是连续存储的。链表由一...
数据结构课程设计-平衡二叉树的操作!本人以前做的就是这个,非常不错的,不过就只有代码哦!
相关链接 二叉树的基础知识点:数据结构-----树和二叉树的定义与性质_Gretel Tade的博客-CSDN博客堆的相关方法代码实现:数据结构-----堆(完全二叉树)_Gretel Tade的博客-CSDN博客二叉树的链式存储结构 #include...
树 二叉树 的相关算法 大程序噢 有树的存储结构 先序遍历 中 后 层次 广度
该资源中为【数据结构】专栏——C语言实现二叉树篇章中涉及到的代码 代码中包含以下内容: 1. 二叉树相关头文件: - 二叉链表的数据类型声明 - 链队列结点类型声明 - 链队列类型声明 - 二叉树基本功能(二叉树的...
这是一个用C实现的AVL tree,带MFC的测试程序。 在我的机器上(P4 T2050 Duo, 1G memory)列C盘所有文件并组织成AVL tree,一共是70000多个文件和目录,耗时大约是5-7秒
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is...