- 浏览: 1146918 次
- 性别:
- 来自: 火星郊区
博客专栏
-
OSGi
浏览量:0
文章分类
- 全部博客 (695)
- 项目管理 (48)
- OSGi (122)
- java (79)
- Vaadin (5)
- RAP (47)
- mysql (40)
- Maven (22)
- SVN (8)
- 孔雀鱼 (10)
- hibernate (9)
- spring (10)
- css (3)
- 年审 (6)
- ant (1)
- jdbc (3)
- FusionCharts (2)
- struts (4)
- 决策分析 (2)
- 生活 (10)
- 架构设计 (5)
- 破解 (2)
- 狼文化 (4)
- JVM (14)
- J2EE (1)
- 应用服务器 (1)
- 我的链接 (5)
- 数学 (2)
- 报表 (1)
- 百科 (6)
- Flex (7)
- log4j (2)
- PHP (1)
- 系统 (2)
- Web前端 (7)
- linux (6)
- Office (1)
- 安全管理 (5)
- python (2)
- dom4j (1)
- 工作流 (3)
- 养生保健 (4)
- Eclipse (8)
- 监控开发 (1)
- 设计 (3)
- CAS (1)
- ZK (41)
- BluePrint (3)
- 工具 (1)
- SWT (7)
- google (2)
- NIO (1)
- 企业文化 (2)
- Windoes (0)
- RCP (7)
- JavaScript (10)
- UML (1)
- 产品经理 (2)
- Velocity (10)
- C (1)
- 单元测试 (1)
- 设计模式 (2)
- 系统分析师 (2)
- 架构 (4)
- 面试 (2)
- 代码走查 (1)
- MongoDB (1)
- 企业流程优化 (1)
- 模式 (1)
- EJB (1)
- Jetty (1)
- Git (13)
- IPV6 (1)
- JQuery (8)
- SSH (1)
- mybatis (10)
- SiteMesh (2)
- JSTL (1)
- veloctiy (1)
- Spring MVC (1)
- struts2 (3)
- Servlet (1)
- 权限管理 (1)
- Java Mina (1)
- java 系统信息 (6)
- OSGi 基础 (3)
- html (1)
- spring--security (6)
- HTML5 (1)
- java爬虫搜索 (1)
- mvc (3)
最新评论
-
Tom.X:
http://osgia.com/
将web容器置于OSGi框架下进行web应用的开发 -
chenyuguxing:
你好, 为什么我的bundle export到felix工程中 ...
在Apache Felix中运行bundle -
string2020:
<niceManifest>true</ni ...
Bundle Plugin for Maven -
jsonmong:
OSGI,是未来的主流,目前已相当成熟。应用OSGI比较好的, ...
基于OSGi的声明式服务 -
zyhui98:
貌似是翻译过来的,有很少人在linux上做开发吧
如何成为“10倍效率”开发者
以下配置主要针对分代垃圾回收算法而言。
堆大小设置
年轻代的设置很关键
JVM中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx3550m -Xms3550m -Xmn2g –Xss128k
-Xmx3550m: 设置JVM最大可用内存为3550M。
-Xms3550m: 设置JVM促使内存为3550m。此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。
-Xmn2g: 设置年轻代大小为2G。整个堆大小=年轻代大小 + 年老代大小 + 持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。
-Xss128k: 设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为 256K。更具应用的线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无 限生成,经验值在3000~5000左右。
java -Xmx3550m -Xms3550m -Xss128k -XX:NewRatio=4 -XX:SurvivorRatio=4 -XX:MaxPermSize=16m -XX:MaxTenuringThreshold=0
-XX:NewRatio=4 :设置年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。设置为4,则年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5
-XX:SurvivorRatio=4 :设置年轻代中Eden区与Survivor区的大小比值。设置为4,则两个Survivor区与一个Eden区的比值为2:4,一个Survivor区占整个年轻代的1/6
-XX:MaxPermSize=16m: 设置持久代大小为16m。
-XX:MaxTenuringThreshold=0: 设置垃圾最大年龄。如果设置为0的话,则年轻代对象不 经过Survivor区,直接进入年老代。对于年老代比较多的应用,可以提高效率。如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行 多次复制,这样可以增加对象再年轻代的存活时间,增加在年轻代即被回收的概论。
回收器选择
JVM给了三种选择:串行收集器、并行收集器、并发收集器 ,但是串行收集器只适用于小数据量的情况,所以这里的选择主要针对并行收集器和并发收集器。默认情况下,JDK5.0以前都是使用串行收集器,如果想使用其他收集器需要在启动时加入相应参数。JDK5.0以后,JVM会根据当前系统配置 进行判断。
吞吐量优先的并行收集器
如上文所述,并行收集器主要以到达一定的吞吐量为目标,适用于科学技术和后台处理等。
典型配置:
java -Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20
-XX:+UseParallelGC: 选择垃圾收集器为并行收集器。此配置仅对年轻代有效。即上述配置下,年轻代使用并发收集,而年老代仍旧使用串行收集。
-XX:ParallelGCThreads=20: 配置并行收集器的线程数,即:同时多少个线程一起进行垃圾回收。此值最好配置与处理器数目相等。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20 -XX:+UseParallelOldGC
-XX:+UseParallelOldGC: 配置年老代垃圾收集方式为并行收集。JDK6.0支持对年老代并行收集。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100
-XX:MaxGCPauseMillis=100 :设置每次年轻代垃圾回收的最长时间,如果无法满足此时间,JVM会自动调整年轻代大小,以满足此值。
n java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100 -XX:+UseAdaptiveSizePolicy
-XX:+UseAdaptiveSizePolicy :设置此选项后,并行收集器会自动选择年轻代区大小和相应的Survivor区比例,以达到目标系统规定的最低相应时间或者收集频率等,此值建议使用并行收集器时,一直打开。
响应时间优先的并发收集器
如上文所述,并发收集器主要是保证系统的响应时间,减少垃圾收集时的停顿时间。适用于应用服务器、电信领域等。
典型配置:
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC: 设置年老代为并发收集。测试中配置这个以后,-XX:NewRatio=4的配置失效了,原因不明。所以,此时年轻代大小最好用-Xmn设置。
-XX:+UseParNewGC: 设置年轻代为并行收集。可与CMS收集同时使用。JDK5.0以上,JVM会根据系统配置自行设置,所以无需再设置此值。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseConcMarkSweepGC -XX:CMSFullGCsBeforeCompaction=5 -XX:+UseCMSCompactAtFullCollection
-XX:CMSFullGCsBeforeCompaction: 由于并发收集器不对内存空间进行压缩、整理,所以运行一段时间以后会产生“碎片”,使得运行效率降低。此值设置运行多少次GC以后对内存空间进行压缩、整理。
-XX:+UseCMSCompactAtFullCollection: 打开对年老代的压缩。可能会影响性能,但是可以消除碎片
辅助信息
JVM提供了大量命令行参数,打印信息,供调试使用。主要有以下一些:
-XX:+PrintGC: 输出形式:[GC 118250K->113543K(130112K), 0.0094143 secs] [Full GC 121376K->10414K(130112K), 0.0650971 secs]
-XX:+PrintGCDetails: 输出形式:[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs] [GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured: 112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs]
-XX:+PrintGCTimeStamps
-XX:+PrintGC:
PrintGCTimeStamps可与上面两个混合使用
输出形式:11.851: [GC
98328K->93620K(130112K), 0.0082960 secs]
-XX:+PrintGCApplicationConcurrentTime: 打印每次垃圾回收前,程序未中断的执行时间。可与上面混合使用。输出形式:Application time: 0.5291524 seconds
-XX:+PrintGCApplicationStoppedTime: 打印垃圾回收期间程序暂停的时间。可与上面混合使用。输出形式:Total time for which application threads were stopped: 0.0468229 seconds
-XX:PrintHeapAtGC: 打印GC前后的详细堆栈信息。输出形式:
34.702: [GC {Heap before gc invocations=7:
def new generation total 55296K, used 52568K [0x1ebd0000, 0x227d0000, 0x227d0000)
eden space 49152K, 99% used [0x1ebd0000, 0x21bce430, 0x21bd0000)
from space 6144K, 55% used [0x221d0000, 0x22527e10, 0x227d0000)
to space 6144K, 0% used [0x21bd0000, 0x21bd0000, 0x221d0000)
tenured generation total 69632K, used 2696K [0x227d0000, 0x26bd0000, 0x26bd0000)
the space 69632K, 3% used [0x227d0000, 0x22a720f8, 0x22a72200, 0x26bd0000)
compacting perm gen total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)
the space 8192K, 35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)
ro space 8192K, 66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)
rw space 12288K, 46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)
34.735: [DefNew: 52568K->3433K(55296K), 0.0072126 secs] 55264K->6615K(124928K)Heap after gc invocations=8:
def new generation total 55296K, used 3433K [0x1ebd0000, 0x227d0000, 0x227d0000)
eden space 49152K, 0% used [0x1ebd0000, 0x1ebd0000, 0x21bd0000)
from space 6144K, 55% used [0x21bd0000, 0x21f2a5e8, 0x221d0000)
to space 6144K, 0% used [0x221d0000, 0x221d0000, 0x227d0000)
tenured generation total 69632K, used 3182K [0x227d0000, 0x26bd0000, 0x26bd0000)
the space 69632K, 4% used [0x227d0000, 0x22aeb958, 0x22aeba00, 0x26bd0000)
compacting perm gen total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)
the space 8192K, 35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)
ro space 8192K, 66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)
rw space 12288K, 46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)
}
, 0.0757599 secs]
-Xloggc:filename: 与上面几个配合使用,把相关日志信息记录到文件以便分析。
常见配置汇总
堆设置
-Xms: 初始堆大小
-Xmx: 最大堆大小
-XX:NewSize=n: 设置年轻代大小
-XX:NewRatio=n: 设置年轻代和年老代的比值。如:为3,表示年轻代与年老代比值为1:3,年轻代占整个年轻代年老代和的1/4
-XX:SurvivorRatio=n: 年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示Eden:Survivor=3:2,一个Survivor区占整个年轻代的1/5
-XX:MaxPermSize=n: 设置持久代大小
收集器设置
-XX:+UseSerialGC: 设置串行收集器
-XX:+UseParallelGC: 设置并行收集器
-XX:+UseParalledlOldGC: 设置并行年老代收集器
-XX:+UseConcMarkSweepGC: 设置并发收集器
垃圾回收统计信息
-XX:+PrintGC
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps
-Xloggc:filename
并行收集器设置
-XX:ParallelGCThreads=n :设置并行收集器收集时使用的CPU数。并行收集线程数。
-XX:MaxGCPauseMillis=n :设置并行收集最大暂停时间
-XX:GCTimeRatio=n :设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)
并发收集器设置
-XX:+CMSIncrementalMode: 设置为增量模式。适用于单CPU情况。
-XX:ParallelGCThreads=n: 设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。
调优总结
年轻代大小选择
响应时间优先的应用: 尽可能设大,直到接近系统的最低响应时间限制(根据实际情况选择)。 在此种情况下,年轻代收集发生的频率也是最小的。同时,减少到达年老代的对象。
吞吐量优先的应用: 尽可能的设置大,可能到达Gbit的程度。因为对响应时间没有要求,垃圾收集可以并行进行,一般适合8CPU以上的应用。
年老代大小选择
响应时间优先的应用: 年老代使用并发收集器,所以其大小需要小心设置,一般要考虑并发会话率 和会话持续时间 等一些参数。如果堆设置小了,可以会造成内存碎片、高回收频率以及应用暂停而使用传统的标记清除方式;如果堆大了,则需要较长的收集时间。最优化的方案,一般需要参考以下数据获得:
1. 并发垃圾收集信息
2. 持久代并发收集次数
3. 传统GC信息
4. 花在年轻代和年老代回收上的时间比例
减少年轻代和年老代花费的时间,一般会提高应用的效率
吞吐量优先的应用
一般吞吐量优先的应用都有一个很大的年轻代和一个较小的年老代。原因是,这样可以尽可能回收掉大部分短期对象,减少中期的对象,而年老代尽存放长期存活对象。
较小堆引起的碎片问题
因为年老代的并发收集器使用标记、清除算法,所以不会对堆进行压缩。当收集器回收时,他会把相邻的空间进行合并,这样可以分配给较大的对象。但是, 当堆空间较小时,运行一段时间以后,就会出现“碎片”,如果并发收集器找不到足够的空间,那么并发收集器将会停止,然后使用传统的标记、清除方式进行回 收。如果出现“碎片”,可能需要进行如下配置:
1. -XX:+UseCMSCompactAtFullCollection: 使用并发收集器时,开启对年老代的压缩。
2. -XX:CMSFullGCsBeforeCompaction=0: 上面配置开启的情况下,这里设置多少次Full GC后,对年老代进行压缩
发表评论
-
JConsole手册
2012-01-13 08:03 1296一篇Sun官方网站上介绍JConsole使用的文章 ,前段时 ... -
JVM调优总结(九)-参考资料
2012-01-12 07:55 1048能整理出上面一些东西,也是因为站在巨人的肩上。下面是一些参考 ... -
JVM调优总结(八)-反思
2012-01-11 08:11 997垃圾回收的悖论 所谓“成也萧何败萧何”。Ja ... -
JVM调优总结(七) - 调优方法
2012-01-11 08:11 975JVM调优工具 Jconsole,jProfile,Vi ... -
JVM调优总结(六)-新一代的垃圾回收算法
2012-01-11 08:10 1129垃圾回收的瓶颈 ... -
JVM调优总结(四)-分代垃圾回收详述
2012-01-10 08:33 1053为什么要分代 分代的垃圾回收策略,是基于这样一个事实 ... -
JVM调优总结(三)- 垃圾回收面临的问题
2012-01-10 08:31 1010如何区分垃圾 ... -
JVM调优总结(二)-基本垃圾回收算法
2012-01-10 08:28 1209可以从不同的的角度去划分垃圾回收算法: 按照基本回收策略分 ... -
JVM调优总结(一):一些概念
2012-01-10 08:16 1163写道 Java虚拟机中,数据类型可以分为两类:基本类型和引 ... -
Eclipse.ini
2012-01-05 11:02 1069今天同学问我Eclipse文件夹下有个Eclipse.ini文 ... -
JAVA启动参数大全之三:非Stable参数
2011-10-25 13:41 1068前面我们提到用-XX作为前缀的参数列表在jvm中可能是不健壮的 ... -
JAVA启动参数大全之二:非标准参数
2011-10-25 13:38 1300非标准参数又称为扩展参数,其列表如下: -Xint 设置jv ... -
JAVA启动参数大全之一:标准参数
2011-10-25 13:37 1263前段时间系统升级时遭 ...
相关推荐
JVM调优总结 -Xms -Xmx -Xmn -Xss JVM 调优是 Java virtual machine 的性能优化,通过调整 JVM 的参数来提高 Java 应用程序的性能。其中,-Xms、-Xmx、-Xmn、-Xss 是四个重要的参数,分别控制 JVM 的初始堆大小、...
### JVM调优总结:Xms、Xmx、Xmn、Xss 在Java虚拟机(JVM)的运行过程中,合理的参数配置对于提高程序性能至关重要。本文将对JVM调优中的几个关键参数进行深入解析,包括-Xms、-Xmx、-Xmn和-Xss等,帮助开发者更好...
本文将对 JVM 调优进行总结,涵盖了 JVM 调优的基本概念、垃圾回收算法、分代垃圾回收、典型配置举例、调优方法、反思等方面的内容。 JVM 调优的基本概念 JVM 调优是指通过调整 JVM 的参数和配置来提高 Java 应用...
### JVM调优总结 #### 1. JVM配置 在Java应用程序的运行过程中,JVM(Java虚拟机)扮演着至关重要的角色。为了确保应用程序能够高效稳定地运行,正确配置JVM参数至关重要。以下是一些常见的JVM配置参数及其含义: ...
总结,JVM调优是一项复杂但至关重要的任务,"jvm-monitor"等工具的出现为开发者提供了便利。通过深入理解JVM的工作原理,结合有效的监控手段,我们可以不断提升Java应用的性能和稳定性。在实践中,我们需要持续学习...
JVM调优涉及到堆内存的配置、垃圾回收机制的优化以及选择合适的垃圾收集器。以下是对文档中提到的知识点的详细说明: 1. 堆内存设置: - **年轻代(Young Generation)**:年轻代内存大小的设置对JVM性能有很大...
### JVM调优总结 #### 一、概述 Java虚拟机(JVM)是Java程序的核心运行环境,对于提高Java应用程序性能至关重要。JVM调优是指通过调整JVM的配置参数来优化程序性能的过程。本文将围绕JVM调优展开讨论,重点分析数据...
JVM调优总结 --收集某位高人的博客.
本资料主要涵盖了五个核心领域:Java并发(JUC)、非阻塞I/O(NIO)、Netty框架、Tomcat服务器优化以及Java虚拟机(JVM)调优。以下是这些主题的详细说明: 1. **Java并发(JUC - Java Concurrency Utilities)** ...
【描述】"Jvm调优练习-jvm-tuning" 暗示了这个压缩包可能包含一系列实验或教程,帮助用户通过实际操作学习如何调整JVM的配置。这可能包括设置不同的JVM参数,分析性能指标,以及理解不同参数对程序运行效率的影响。 ...
### JVM调优与垃圾回收机制详解 #### 一、引言 随着软件系统的复杂度不断提高,性能优化成为了软件开发中的一个重要环节。对于Java应用程序来说,Java虚拟机(JVM)的性能直接影响着应用的整体表现。垃圾回收(GC)...
在Java开发领域,JVM(Java Virtual Machine)参数调优是一项至关重要的工作,它直接影响到应用程序的性能、稳定性以及资源利用率。"JVM 参数调优-optimization-jvm.zip"这个压缩包很可能是包含了一套关于JVM调优的...
在典型配置举例部分,文档提供了实例来说明如何设置JVM参数来优化垃圾回收和内存分配。此外,文档还提到了新一代垃圾回收算法,例如G1垃圾回收器,它旨在解决之前算法的一些限制,比如暂停时间过长的问题。 最后,...
java6 JVM 调优参数大全 -XX
"用于测试jvm gc调优-share-jvm-gc.zip"这个压缩包文件很可能包含了一些工具、脚本或教程,用于帮助我们了解和实践JVM的垃圾收集优化。 首先,我们需要理解JVM GC的基本原理。垃圾收集器的主要任务是识别并回收不再...
在深入讨论JVM(Java虚拟机)调优之前,我们有必要先了解一下虚拟机的基本概念和堆栈...通过上述的分析和总结,我们可以得出,JVM调优是一个涉及多方面知识的复杂过程,需要开发者具备扎实的理论基础和丰富的实践经验。
本资料"jvm-full-gc调优-jvm-full-gc.zip"显然是针对如何减少和优化JVM的Full GC进行深入探讨的。以下将详细介绍JVM Full GC的相关知识点。 1. **理解JVM内存结构**:Java内存主要分为堆内存(Heap)和非堆内存...
3. JVM调优:JVM调优通常指对JVM进行配置,优化性能以应对特定的应用需求。常见的调优手段包括调整堆内存大小、设置垃圾回收器(GC)、调整线程堆栈大小、选择合适的垃圾回收策略和参数等。 4. JAVA并发:Java并发...