推荐安卓开发神器(里面有各种UI特效和android代码库实例)
onInterceptTouchEvent()是ViewGroup的一个方法,目的是在系统向该ViewGroup及其各个childView触发onTouchEvent()之前对相关事件进行一次拦截,Android这么设计的想法也很好理解,由于ViewGroup会包含若干childView,因此需要能够统一监控各种touch事件的机会,因此纯粹的不能包含子view的控件是没有这个方法的,如LinearLayout就有,TextView就没有。
onInterceptTouchEvent()使用也很简单,如果在ViewGroup里覆写了该方法,那么就可以对各种touch事件加以拦截。但是如何拦截,是否所有的touch事件都需要拦截则是比较复杂的,touch事件在onInterceptTouchEvent()和onTouchEvent以及各个childView间的传递机制完全取决于onInterceptTouchEvent()和onTouchEvent()的返回值。并且,针对down事件处理的返回值直接影响到后续move和up事件的接收和传递。
关于返回值的问题,基本规则很清楚,如果return true,那么表示该方法消费了此次事件,如果return false,那么表示该方法并未处理完全,该事件仍然需要以某种方式传递下去继续等待处理。
SDK给出的说明如下:
· You will receive the down event here.
· The down event will be handled either by a child of this view group, or given to your own onTouchEvent() method to handle; this means you should implement onTouchEvent() to return true, so you will continue to see the rest of the gesture (instead of looking for a parent view to handle it). Also, by returning true from onTouchEvent(), you will not receive any following events in onInterceptTouchEvent() and all touch processing must happen in onTouchEvent() like normal.
· For as long as you return false from this function, each following event (up to and including the final up) will be delivered first here and then to the target's onTouchEvent().
· If you return true from here, you will not receive any following events: the target view will receive the same event but with the action ACTION_CANCEL, and all further events will be delivered to your onTouchEvent() method and no longer appear here.
由于onInterceptTouchEvent()的机制比较复杂,上面的说明写的也比较复杂,总结一下,基本的规则是:
1. down事件首先会传递到onInterceptTouchEvent()方法
2. 如果该ViewGroup的onInterceptTouchEvent()在接收到down事件处理完成之后return false,那么后续的move, up等事件将继续会先传递给该ViewGroup,之后才和down事件一样传递给最终的目标view的onTouchEvent()处理。
3. 如果该ViewGroup的onInterceptTouchEvent()在接收到down事件处理完成之后return true,那么后续的move, up等事件将不再传递给onInterceptTouchEvent(),而是和down事件一样传递给该ViewGroup的onTouchEvent()处理,注意,目标view将接收不到任何事件。
4. 如果最终需要处理事件的view的onTouchEvent()返回了false,那么该事件将被传递至其上一层次的view的onTouchEvent()处理。
5. 如果最终需要处理事件的view 的onTouchEvent()返回了true,那么后续事件将可以继续传递给该view的onTouchEvent()处理。
下面用一个简单的实验说明上述复杂的规则。视图自底向上共3层,其中LayoutView1和LayoutView2就是LinearLayout, MyTextView就是TextView:
对应的xml布局文件如下:
<?xml version="1.0" encoding="utf-8"?>
<com.touchstudy.LayoutView1 xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent" >
<com.touchstudy.LayoutView2
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:gravity="center">
<com.touchstudy.MyTextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/tv"
android:text="AB"
android:textSize="40sp"
android:textStyle="bold"
android:background="#FFFFFF"
android:textColor="#0000FF"/>
</com.touchstudy.LayoutView2>
</com.touchstudy.LayoutView1>
下面看具体情况:
1. onInterceptTouchEvent()处理down事件均返回false,onTouchEvent()处理事件均返回true
------------------------------------------------------------------------------------------------------------------------------
04-11 03:58:42.620: DEBUG/LayoutView1(614): onInterceptTouchEvent action:ACTION_DOWN
04-11 03:58:42.620: DEBUG/LayoutView2(614): onInterceptTouchEvent action:ACTION_DOWN
04-11 03:58:42.620: DEBUG/MyTextView(614): onTouchEvent action:ACTION_DOWN
04-11 03:58:42.800: DEBUG/LayoutView1(614): onInterceptTouchEvent action:ACTION_MOVE
04-11 03:58:42.800: DEBUG/LayoutView2(614): onInterceptTouchEvent action:ACTION_MOVE
04-11 03:58:42.800: DEBUG/MyTextView(614): onTouchEvent action:ACTION_MOVE
…… //省略过多的ACTION_MOVE
04-11 03:58:43.130: DEBUG/LayoutView1(614): onInterceptTouchEvent action:ACTION_UP
04-11 03:58:43.130: DEBUG/LayoutView2(614): onInterceptTouchEvent action:ACTION_UP
04-11 03:58:43.150: DEBUG/MyTextView(614): onTouchEvent action:ACTION_UP
------------------------------------------------------------------------------------------------------------------------------
这是最常见的情况,onInterceptTouchEvent并没有做任何改变事件传递时序的操作,效果上和没有覆写该方法是一样的。可以看到,各种事件的传递本身是自底向上的,次序是:LayoutView1->LayoutView2->MyTextView。注意,在onInterceptTouchEvent均返回false时,LayoutView1和LayoutView2的onTouchEvent并不会收到事件,而是最终传递给了MyTextView。
2. LayoutView1的onInterceptTouchEvent()处理down事件返回true,
MyTextView的onTouchEvent()处理事件返回true
------------------------------------------------------------------------------------------------------------------------------
04-11 03:09:27.589: DEBUG/LayoutView1(446): onInterceptTouchEvent action:ACTION_DOWN
04-11 03:09:27.589: DEBUG/LayoutView1(446): onTouchEvent action:ACTION_DOWN
04-11 03:09:27.629: DEBUG/LayoutView1(446): onTouchEvent action:ACTION_MOVE
04-11 03:09:27.689: DEBUG/LayoutView1(446): onTouchEvent action:ACTION_MOVE
…… //省略过多的ACTION_MOVE
04-11 03:09:27.959: DEBUG/LayoutView1(446): onTouchEvent action:ACTION_UP
------------------------------------------------------------------------------------------------------------------------------
从Log可以看到,由于LayoutView1在拦截第一次down事件时return true,所以后续的事件(包括第一次的down)将由LayoutView1本身处理,事件不再传递下去。
3. LayoutView1,LayoutView2的onInterceptTouchEvent()处理down事件返回false,
MyTextView的onTouchEvent()处理事件返回false
LayoutView2的onTouchEvent()处理事件返回true
----------------------------------------------------------------------------------------------------------------------------
04-11 09:50:21.147: DEBUG/LayoutView1(301): onInterceptTouchEvent action:ACTION_DOWN
04-11 09:50:21.147: DEBUG/LayoutView2(301): onInterceptTouchEvent action:ACTION_DOWN
04-11 09:50:21.147: DEBUG/MyTextView(301): onTouchEvent action:ACTION_DOWN
04-11 09:50:21.147: DEBUG/LayoutView2(301): onTouchEvent action:ACTION_DOWN
04-11 09:50:21.176: DEBUG/LayoutView1(301): onInterceptTouchEvent action:ACTION_MOVE
04-11 09:50:21.176: DEBUG/LayoutView2(301): onTouchEvent action:ACTION_MOVE
04-11 09:50:21.206: DEBUG/LayoutView1(301): onInterceptTouchEvent action:ACTION_MOVE
04-11 09:50:21.217: DEBUG/LayoutView2(301): onTouchEvent action:ACTION_MOVE
…… //省略过多的ACTION_MOVE
04-11 09:50:21.486: DEBUG/LayoutView1(301): onInterceptTouchEvent action:ACTION_UP
04-11 09:50:21.486: DEBUG/LayoutView2(301): onTouchEvent action:ACTION_UP
----------------------------------------------------------------------------------------------------------------------------
可以看到,由于MyTextView在onTouchEvent()中return false,down事件被传递给其父view,即LayoutView2的onTouchEvent()方法处理,由于在LayoutView2的onTouchEvent()中return true,所以down事件传递并没有上传到LayoutView1。注意,后续的move和up事件均被传递给LayoutView2的onTouchEvent()处理,而没有传递给MyTextView。
----------------------------------------------------------------------------------------------------------------
应大家的要求,我把源代码贴上,其实很简单,就是基础文件,主要是用来观察事件的传递。
主Activity: InterceptTouchStudyActivity.java:
public class InterceptTouchStudyActivity extends Activity {
static final String TAG = "ITSActivity";
TextView tv;
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.layers_touch_pass_test);
}
}
LayoutView1.java:
public class LayoutView1 extends LinearLayout {
private final String TAG = "LayoutView1";
public LayoutView1(Context context, AttributeSet attrs) {
super(context, attrs);
Log.d(TAG,TAG);
}
@Override
public boolean onInterceptTouchEvent(MotionEvent ev) {
int action = ev.getAction();
switch(action){
case MotionEvent.ACTION_DOWN:
Log.d(TAG,"onInterceptTouchEvent action:ACTION_DOWN");
// return true;
break;
case MotionEvent.ACTION_MOVE:
Log.d(TAG,"onInterceptTouchEvent action:ACTION_MOVE");
break;
case MotionEvent.ACTION_UP:
Log.d(TAG,"onInterceptTouchEvent action:ACTION_UP");
break;
case MotionEvent.ACTION_CANCEL:
Log.d(TAG,"onInterceptTouchEvent action:ACTION_CANCEL");
break;
}
return false;
}
@Override
public boolean onTouchEvent(MotionEvent ev) {
int action = ev.getAction();
switch(action){
case MotionEvent.ACTION_DOWN:
Log.d(TAG,"onTouchEvent action:ACTION_DOWN");
break;
case MotionEvent.ACTION_MOVE:
Log.d(TAG,"onTouchEvent action:ACTION_MOVE");
break;
case MotionEvent.ACTION_UP:
Log.d(TAG,"onTouchEvent action:ACTION_UP");
break;
case MotionEvent.ACTION_CANCEL:
Log.d(TAG,"onTouchEvent action:ACTION_CANCEL");
break;
}
return true;
}
@Override
protected void onLayout(boolean changed, int l, int t, int r, int b) {
// TODO Auto-generated method stub
super.onLayout(changed, l, t, r, b);
}
@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
// TODO Auto-generated method stub
super.onMeasure(widthMeasureSpec, heightMeasureSpec);
}
}
LayoutView2.java:
public class LayoutView2 extends LinearLayout {
private final String TAG = "LayoutView2";
public LayoutView2(Context context, AttributeSet attrs) {
super(context, attrs);
Log.d(TAG,TAG);
}
@Override
public boolean onInterceptTouchEvent(MotionEvent ev) {
int action = ev.getAction();
switch(action){
case MotionEvent.ACTION_DOWN:
Log.d(TAG,"onInterceptTouchEvent action:ACTION_DOWN");
break;
case MotionEvent.ACTION_MOVE:
Log.d(TAG,"onInterceptTouchEvent action:ACTION_MOVE");
break;
case MotionEvent.ACTION_UP:
Log.d(TAG,"onInterceptTouchEvent action:ACTION_UP");
break;
case MotionEvent.ACTION_CANCEL:
Log.d(TAG,"onInterceptTouchEvent action:ACTION_CANCEL");
break;
}
return false;
}
@Override
public boolean onTouchEvent(MotionEvent ev) {
int action = ev.getAction();
switch(action){
case MotionEvent.ACTION_DOWN:
Log.d(TAG,"onTouchEvent action:ACTION_DOWN");
break;
case MotionEvent.ACTION_MOVE:
Log.d(TAG,"onTouchEvent action:ACTION_MOVE");
break;
case MotionEvent.ACTION_UP:
Log.d(TAG,"onTouchEvent action:ACTION_UP");
break;
case MotionEvent.ACTION_CANCEL:
Log.d(TAG,"onTouchEvent action:ACTION_CANCEL");
break;
}
return true;
}
}
MyTextView.java:
public class MyTextView extends TextView {
private final String TAG = "MyTextView";
public MyTextView(Context context, AttributeSet attrs) {
super(context, attrs);
Log.d(TAG,TAG);
}
@Override
public boolean onTouchEvent(MotionEvent ev) {
int action = ev.getAction();
switch(action){
case MotionEvent.ACTION_DOWN:
Log.d(TAG,"onTouchEvent action:ACTION_DOWN");
break;
case MotionEvent.ACTION_MOVE:
Log.d(TAG,"onTouchEvent action:ACTION_MOVE");
break;
case MotionEvent.ACTION_UP:
Log.d(TAG,"onTouchEvent action:ACTION_UP");
break;
case MotionEvent.ACTION_CANCEL:
Log.d(TAG,"onTouchEvent action:ACTION_CANCEL");
break;
}
return false;
}
public void onClick(View v) {
Log.d(TAG, "onClick");
}
public boolean onLongClick(View v) {
Log.d(TAG, "onLongClick");
return false;
}
}
相关推荐
在Android开发中,理解和掌握`onInterceptTouchEvent`与`onTouchEvent`的调用时序至关重要,因为它们是实现触摸事件处理的关键。这两个方法都属于Android的触摸事件处理机制,涉及到了ViewGroup与子View之间的事件...
onInterceptTouchEvent和onTouchEvent调用时序详解 测试demo 详细介绍请移步:http://blog.csdn.net/yiranxinshou/article/details/9201833
"Touch事件案例"主要关注的是`onInterceptTouchEvent`和`onTouchEvent`这两个方法的调用时序,它们是处理触摸事件的关键组件,尤其在复杂的布局结构中,理解它们的工作原理对于优化用户界面和交互至关重要。...
# 压缩文件中包含: 中文-英文对照文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文-英文对照文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;
内容概要:本文详细探讨了基于模型预测控制(MPC)的微网共享储能优化调度技术,分为日前优化和日内滚动MPC跟踪两大部分。日前优化部分通过分析居民用电需求,制定储能充放电策略,确保整体能源利用效率最大化。日内滚动MPC跟踪部分则通过预测模型、滚动优化和反馈校正,动态调整储能状态,保持系统稳定。文中提供了多个Python和MATLAB代码片段,展示了具体的技术实现细节,如K-means聚类、CVXPY建模、LSTM+ARIMA混合预测等。 适合人群:从事微网系统设计、储能优化调度的研究人员和技术开发者,以及对模型预测控制感兴趣的工程技术人员。 使用场景及目标:适用于微网系统的储能管理,旨在提高能源利用效率、降低运营成本,并确保系统在各种工况下的稳定性。主要目标是通过合理的储能调度,实现削峰填谷和平抑负荷波动。 其他说明:文章不仅介绍了理论背景,还分享了实际应用中的经验和教训,如处理光伏出力预测误差、优化求解器性能等问题。同时,文中提到的一些关键技术点,如充放电互斥约束、终端约束等,有助于深入理解MPC的应用挑战和解决方案。
本书由Bernard Marr撰写,探讨了互联网的第三次演变——未来互联网,即Web 3.0和元宇宙的概念。作者详细分析了元宇宙技术、Web3和区块链如何共同作用,推动互联网向更沉浸式和去中心化的方向发展。书中指出,这一变革不仅将改变我们的日常生活和娱乐方式,还将深刻影响教育、金融、医疗保健以及制造业等多个行业。同时,作者也探讨了政府和公共服务如何利用未来互联网提高效率,以及企业如何在这一变革中重新思考产品、服务和业务运营。书中还强调了未来互联网对技能需求的影响,以及如何在企业中建立适应未来互联网的成功文化,并制定相应的战略。
# 压缩文件中包含: 中文-英文对照文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文-英文对照文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;
内容概要:本文详细介绍了如何使用VHDL语言在FPGA上实现16阶FIR低通滤波器的设计与实现。首先,文中给出了滤波器的基本参数设定,如采样率为50MHz,截止频率为3MHz,并采用汉明窗进行设计。接着,展示了顶层实体声明及其内部逻辑结构,包括移位寄存器作为延迟线以及乘累加操作的具体实现方法。同时提供了完整的VHDL代码片段,涵盖了从顶层实体定义到具体的功能模块,如系数生成、数据移位寄存器和乘累加模块。此外,还讨论了ModelSim仿真的配置与测试激励生成方式,确保仿真结果能够正确反映滤波器性能。最后,针对硬件实现过程中可能出现的问题进行了提示,如时钟约束、资源优化等。 适合人群:具有一定FPGA开发经验的技术人员,尤其是对VHDL编程有一定了解并希望深入研究FIR滤波器实现的人群。 使用场景及目标:适用于需要在FPGA平台上快速搭建并验证FIR低通滤波器的应用场合。主要目标是帮助开发者掌握FIR滤波器的工作原理及其在FPGA上的高效实现方法。 其他说明:文中不仅提供了详细的代码示例,还包括了许多实用的经验分享和技术要点提醒,有助于提高开发效率并减少常见错误的发生。
内容概要:本文详细介绍了车辆紧急防避撞AEB控制系统的构建与实现。首先,文章阐述了驾驶员制动模型,通过模拟人类驾驶者的制动行为,使车辆能够根据实际情况做出适当的制动反应。其次,引入了模糊控制方法用于计算期望减速度,使得车辆能够在面对不确定性环境时作出智能化决策。再次,建立了纵向发动机逆动力学模型,以确定合适的节气门开度,确保车辆的动力输出满足制动需求。此外,还探讨了制动压力与减速度的关系以及风阻和滚动阻力的影响,并展示了具体的代码实现。最后,文章描述了仿真的步骤,强调了验证模型有效性的重要性。 适合人群:从事自动驾驶技术研发的专业人士、对车辆控制感兴趣的工程师和技术爱好者。 使用场景及目标:适用于研究和开发先进的车辆安全辅助系统,旨在提高车辆在紧急情况下的避撞能力,减少交通事故的发生。通过理解和应用文中提供的模型和代码,可以为实际工程项目提供理论支持和技术指导。 其他说明:文章不仅提供了详细的理论解释,还包括了大量的代码示例,便于读者理解和实践。同时,作者还分享了一些实际开发中的经验和技巧,有助于解决可能出现的问题并优化系统性能。
Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源
脚本功能: 自动打开浏览器。 进入指定的登录页面。 输入预设的用户名和密码。 点击登录按钮。 登录成功后获取用户信息并打印。 点击退出按钮并退出登录。 关闭浏览器。 注意事项: 确保已安装适用于您浏览器的驱动程序,例如 ChromeDriver,并正确设置其路径。 在实际应用中,您需要根据目标网站的结构和元素修改选择器(如 By.NAME、By.ID 等)和相应的值。 此脚本仅为示例,实际使用时需要考虑更复杂的场景,例如异常处理、验证码处理、动态元素加载等。 遵守目标网站的使用条款和法律法规,不要用于非法或未经授权的操作。
# 压缩文件中包含: 中文文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;
【信息安全领域实战项目】
# 压缩文件中包含: 中文文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;
内容概要:本文探讨了基于滑膜控制的五辆车编队实现自适应协同巡航控制(ACC)的研究。通过carsim/Simulink平台进行仿真,采用分层控制结构,上层滑膜控制器根据前车的距离和速度误差计算期望加速度,下层则通过控制节气门开度和制动压力来实现车速控制。文中展示了详细的算法架构、关键代码片段以及丰富的仿真结果图,验证了滑膜控制在车辆编队中的优越性能,特别是在紧急情况下能够迅速反应并保持稳定的跟车距离。 适合人群:对自动驾驶技术和车辆控制系统感兴趣的科研人员、工程师及高校相关专业学生。 使用场景及目标:适用于研究和开发多车编队的自适应巡航控制系统,旨在提高车队行驶的安全性和效率。具体目标包括减少车速跟踪误差、优化节气门和制动控制、提升紧急情况下的响应速度。 其他说明:提供了详细的滑膜控制理论讲解和技术实现细节,附带完整的仿真数据和工程落地指导,有助于读者深入理解和应用该技术。
# 压缩文件中包含: 中文-英文对照文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文-英文对照文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;
内容概要:本文详细介绍了三相桥式整流电路采用双闭环控制(电流内环和电压外环)的方法及其在MATLAB中的仿真实现。首先阐述了为何需要引入电流内环来提高系统的动态响应速度和稳定性,特别是在负载突变情况下。接着描述了硬件配置,包括六个晶闸管的工作方式以及触发脉冲的生成机制。文中给出了具体的双PI控制器参数设置方法,并展示了如何通过调整电流环和电压环的比例和积分系数来优化系统性能。此外,还讨论了常见的调试问题及解决方案,如同步触发信号的相位补偿、PI参数的选择、采样时间的影响等。最后通过仿真实验数据对比,证明了双闭环控制相比单环控制在稳定性和抗干扰方面有着显著优势。 适合人群:从事电力电子研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于需要深入了解三相桥式整流电路双闭环控制原理并进行仿真实践的学习者;旨在帮助读者掌握双闭环控制系统的参数选择、调试技巧及应用实例。 其他说明:文中提供了大量MATLAB代码片段用于辅助理解和实施具体控制策略,同时分享了许多来自实际项目的经验教训,有助于读者更好地将理论应用于实践中。
内容概要:本文详细介绍了飞蛾扑火优化算法(Moth Flame Optimization, MFO)的原理和实现方法。首先解释了MFO的基本概念,即通过模仿飞蛾绕光飞行的行为来构建优化算法。接着展示了MFO的关键公式和Matlab代码实现,特别是飞蛾位置更新公式的具体形式。文中提供了23个经典的测试函数用于评估MFO性能,并给出了具体的调用方式。此外,还讨论了算法运行效果以及一些重要的调参经验和技巧,如种群数量、迭代次数、边界设定等。最后分享了一个实际应用案例,展示了MFO在光伏电池板排布优化中的成功应用。 适合人群:对优化算法感兴趣的科研工作者、学生以及从事相关领域研究的专业人士。 使用场景及目标:适用于需要高效求解复杂优化问题的研究项目,尤其是涉及多峰函数优化的情况。目标是帮助读者掌握MFO的工作原理并能够独立应用于实际问题中。 其他说明:本文不仅提供了详细的理论讲解和技术细节,还包括完整的代码实现和丰富的实验数据,有助于深入理解和实践MFO算法。
DBeaver 是一个通用的数据库管理工具和 SQL 客户端,具有许多功能,包括元数据编辑器、SQL 编辑器、富数据编辑器、ERD、数据导出/导入/迁移、SQL 执行计划等。支持 MySQL, PostgreSQL, Oracle, DB2, MSSQL, Sybase, Mimer, HSQLDB、Derby、Teradata、Vertica、Netezza、Informix 等。
内容概要:本文详细探讨了永磁同步电机(PMSM)中采用降阶负载转矩观测器进行转矩估计的方法,并介绍了将估计得到的负载转矩用于前馈补偿的技术。首先,文章指出传统全阶观测器存在模型复杂、参数调整困难的问题,提出利用降阶观测器简化模型并提高参数调整效率。接着,通过具体的数学推导和MATLAB/Simulink代码展示了降阶观测器的设计过程,强调了关键参数如观测器增益的选择对系统性能的影响。然后,讨论了前馈补偿的具体实现方式,即在速度环输出中加入负载转矩估计值,从而有效减小突加负载引起的转速波动。最后,通过实验数据对比证明了该方法的有效性和优越性,尤其是在应对突加负载时的表现更为突出。 适合人群:从事电机控制领域的研究人员和技术人员,尤其是关注永磁同步电机控制策略优化的专业人士。 使用场景及目标:适用于需要精确控制永磁同步电机转矩的应用场合,如电梯、电动汽车等。目标是提高系统的抗干扰能力和稳定性,减少突加负载导致的转速波动。 其他说明:文中提供了详细的MATLAB和C语言代码示例以及仿真模型构建指南,有助于读者理解和实践所介绍的技术。此外,还分享了一些实用的工程经验和调试技巧,如参数设置范围、注意事项等。