- 浏览: 138058 次
- 性别:
- 来自: 上海
文章分类
- 全部博客 (137)
- java (138)
- c# winform (笨方法)根据不同的样式配置 设置窗体相关控件的背景 以改变窗体风格 (1)
- Android平台下实现一个进程管理器 (1)
- 装饰模式 (1)
- 【转】介绍线性代数 (1)
- fqueue初步分析 (1)
- 千万级sql优化 (1)
- 开源项目 (1)
- js弹出遮罩层【并弹出提示信息】 (1)
- 代码高亮、源码格式、iteye代码格式的种种方法 (1)
- Drupal学习笔记(四)warning: array_key_exists(): The first argument should be either a string or an integer (1)
- 2011年Java EE生产力报告 (1)
- java(j2se)学习笔记----类注释文档编写方法? (1)
- ubuntu 添加应用程序 到快速启动 (1)
- JPA注解配置实例 (1)
- C++著名内裤 (1)
- Android笔试或者面试的几个题目 (1)
- Ajax&&GWT (1)
- IHS静默安装(转) (1)
- WIN98下运行DOTNET程序的一些问题 (1)
- 开启新的项目——基于电子邮件的知识管理系统 (1)
- 这里的BLOG服务器也太不稳定了 (1)
- MapXtreme2004代码 读取TAB表中的元素 (1)
- 终于把我的大部分BLOG复制到这里来了 (1)
- 2011NOKIA笔试题目 (1)
- Ajax实现省市二级联动(源代码) (1)
- mxgraph之保存图片 (1)
- sso单点登录 (1)
- Android开发之SurfaceView (1)
- Android开发之ListView (1)
- SQL SERVER 2008 中分页方法集锦 (1)
- 2011-12-2 (1)
- 分页组件 (1)
- Myeclipse自动加入struts 2 Core Libraries导致antlr错误 (1)
- jbpm4在tomcat6中EL错误 (1)
- c++中有关数组和指针的若干问题 (1)
- rails 上传文件和删除文件 (1)
最新评论
-
mazongfei:
就是有点乱,不过还是不错的
sso单点登录 -
xiaokang1582830:
写得这么乱,地球人是无法看得懂的...
sso单点登录 -
shenyu:
大侠,下回分解在哪里啊?
mxgraph之保存图片 -
GZQ0821:
为啥不编译后贴出来呢!
SQL SERVER 2008 中分页方法集锦 -
evil9999:
http://belives2012.blog.163.com ...
千万级sql优化
这里转一个别人写的对线性代数的理解,觉得他已经写出了线性代数的魂。可惜的是我也是从网上别人的转载中摘录的,未知作者的大名啊。
今天先谈谈对线形空间和矩阵的几个核心概念的理解。这些东西大部分是凭着自己的理解写出来的,基本上不抄书,可能有错误的地方,希望能够被指出。但我希望做到直觉,也就是说能把数学背后说的实质问题说出来。
首先说说空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间。线形空间其实还是比较初级的,如果在里面定义了范数,就成了赋范线性空间。赋范线性空间满足完备性,就成了巴那赫空间;赋范线性空间中定义角度,就有了内积空间,内积空间再满足完备性,就得到希尔伯特空间。
总之,空间有很多种。你要是去看某种空间的数学定义,大致都是“存在一个集合,在这个集合上定义某某概念,然后满足某些性质”,就可以被称为空间。这未免有点奇怪,为什么要用“空间”来称呼一些这样的集合呢?大家将会看到,其实这是很有道理的。
我们一般人最熟悉的空间,毫无疑问就是我们生活在其中的(按照牛顿的绝对时空观)的三维空间,从数学上说,这是一个三维的欧几里德空间,我们先不管那么多,先看看我们熟悉的这样一个空间有些什么最基本的特点。仔细想想我们就会知道,这个三维的空间:1. 由很多(实际上是无穷多个)位置点组成;2. 这些点之间存在相对的关系;3. 可以在空间中定义长度、角度;4. 这个空间可以容纳运动,这里我们所说的运动是从一个点到另一个点的移动(变换),而不是微积分意义上的“连续”性的运动,
上面的这些性质中,最最关键的是第4条。第1、2条只能说是空间的基础,不算是空间特有的性质,凡是讨论数学问题,都得有一个集合,大多数还得在这个集合上定义一些结构(关系),并不是说有了这些就算是空间。而第3条太特殊,其他的空间不需要具备,更不是关键的性质。只有第4条是空间的本质,也就是说,容纳运动是空间的本质特征。
认识到了这些,我们就可以把我们关于三维空间的认识扩展到其他的空间。事实上,不管是什么空间,都必须容纳和支持在其中发生的符合规则的运动(变换)。你会发现,在某种空间中往往会存在一种相对应的变换,比如拓扑空间中有拓扑变换,线性空间中有线性变换,仿射空间中有仿射变换,其实这些变换都只不过是对应空间中允许的运动形式而已。
因此只要知道,“空间”是容纳运动的一个对象集合,而变换则规定了对应空间的运动。
下面我们来看看线性空间。线性空间的定义任何一本书上都有,但是既然我们承认线性空间是个空间,那么有两个最基本的问题必须首先得到解决,那就是:
1. 空间是一个对象集合,线性空间也是空间,所以也是一个对象集合。那么线性空间是什么样的对象的集合?或者说,线性空间中的对象有什么共同点吗?
2. 线性空间中的运动如何表述的?也就是,线性变换是如何表示的?
我们先来回答第一个问题,回答这个问题的时候其实是不用拐弯抹角的,可以直截了当的给出答案。线性空间中的任何一个对象,通过选取基和坐标的办法,都可以表达为向量的形式。通常的向量空间我就不说了,举两个不那么平凡的例子:
L1. 最高次项不大于n次的多项式的全体构成一个线性空间,也就是说,这个线性空间中的每一个对象是一个多项式。如果我们以x0, x1, ..., xn为基,那么任何一个这样的多项式都可以表达为一组n+1维向量,其中的每一个分量ai其实就是多项式中x(i-1)项的系数。值得说明的是,基的选取有多种办法,只要所选取的那一组基线性无关就可以。这要用到后面提到的概念了,所以这里先不说,提一下而已。
L2. 闭区间[a, b]上的n阶连续可微函数的全体,构成一个线性空间。也就是说,这个线性空间的每一个对象是一个连续函数。对于其中任何一个连续函数,根据魏尔斯特拉斯定理,一定可以找到最高次项不大于n的多项式函数,使之与该连续函数的差为0,也就是说,完全相等。这样就把问题归结为L1了。后面就不用再重复了。
所以说,向量是很厉害的,只要你找到合适的基,用向量可以表示线性空间里任何一个对象。这里头大有文章,因为向量表面上只是一列数,但是其实由于它的有序性,所以除了这些数本身携带的信息之外,还可以在每个数的对应位置上携带信息。为什么在程序设计中数组最简单,却又威力无穷呢?根本原因就在于此。这是另一个问题了,这里就不说了。
下面来回答第二个问题,这个问题的回答会涉及到线性代数的一个最根本的问题。
线性空间中的运动,被称为线性变换。也就是说,你从线性空间中的一个点运动到任意的另外一个点,都可以通过一个线性变化来完成。那么,线性变换如何表示呢?很有意思,在线性空间中,当你选定一组基之后,不仅可以用一个向量来描述空间中的任何一个对象,而且可以用矩阵来描述该空间中的任何一个运动(变换)。而使某个对象发生对应运动的方法,就是用代表那个运动的矩阵,乘以代表那个对象的向量。
简而言之,在线性空间中选定基之后,向量刻画对象,矩阵刻画对象的运动,用矩阵与向量的乘法施加运动。
是的,矩阵的本质是运动的描述。如果以后有人问你矩阵是什么,那么你就可以响亮地告诉他,矩阵的本质是运动的描述。
可是多么有意思啊,向量本身不是也可以看成是n x 1矩阵吗?这实在是很奇妙,一个空间中的对象和运动竟然可以用相类同的方式表示。能说这是巧合吗?如果是巧合的话,那可真是幸运的巧合!可以说,线性代数中大多数奇妙的性质,均与这个巧合有直接的关系。
接着理解矩阵。
上一篇里说“矩阵是运动的描述”,到现在为止,好像大家都还没什么意见。但是我相信早晚会有数学系出身的网友来拍板转。因为运动这个概念,在数学和物理里是跟微积分联系在一起的。我们学习微积分的时候,总会有人照本宣科地告诉你,初等数学是研究常量的数学,是研究静态的数学,高等数学是变量的数学,是研究运动的数学。大家口口相传,差不多人人都知道这句话。但是真知道这句话说的是什么意思的人,好像也不多。简而言之,在我们人类的经验里,运动是一个连续过程,从A点到B点,就算走得最快的光,也是需要一个时间来逐点地经过AB之间的路径,这就带来了连续性的概念。而连续这个事情,如果不定义极限的概念,根本就解释不了。古希腊人的数学非常强,但就是缺乏极限观念,所以解释不了运动,被芝诺的那些著名悖论(飞箭不动、飞毛腿阿喀琉斯跑不过乌龟等四个悖论)搞得死去活来。因为这篇文章不是讲微积分的,所以我就不多说了。有兴趣的读者可以去看看齐民友教授写的《重温微积分》。我就是读了这本书开头的部分,才明白“高等数学是研究运动的数学”这句话的道理。
不过在我这个《理解矩阵》的文章里,“运动”的概念不是微积分中的连续性的运动,而是瞬间发生的变化。比如这个时刻在A点,经过一个“运动”,一下子就“跃迁”到了B点,其中不需要经过A点与B点之间的任何一个点。这样的“运动”,或者说“跃迁”,是违反我们日常的经验的。不过了解一点量子物理常识的人,就会立刻指出,量子(例如电子)在不同的能量级轨道上跳跃,就是瞬间发生的,具有这样一种跃迁行为。所以说,自然界中并不是没有这种运动现象,只不过宏观上我们观察不到。但是不管怎么说,“运动”这个词用在这里,还是容易产生歧义的,说得更确切些,应该是“跃迁”。因此这句话可以改成:
“矩阵是线性空间里跃迁的描述”。
可是这样说又太物理,也就是说太具体,而不够数学,也就是说不够抽象。因此我们最后换用一个正牌的数学术语——变换,来描述这个事情。这样一说,大家就应该明白了,所谓变换,其实就是空间里从一个点(元素/对象)到另一个点(元素/对象)的跃迁。比如说,拓扑变换,就是在拓扑空间里从一个点到另一个点的跃迁。再比如说,仿射变换,就是在仿射空间里从一个点到另一个点的跃迁。附带说一下,这个仿射空间跟向量空间是亲兄弟。做计算机图形学的朋友都知道,尽管描述一个三维对象只需要三维向量,但所有的计算机图形学变换矩阵都是4 x 4的。说其原因,很多书上都写着“为了使用中方便”,这在我看来简直就是企图蒙混过关。真正的原因,是因为在计算机图形学里应用的图形变换,实际上是在仿射空间而不是向量空间中进行的。想想看,在向量空间里相一个向量平行移动以后仍是相同的那个向量,而现实世界等长的两个平行线段当然不能被认为同一个东西,所以计算机图形学的生存空间实际上是仿射空间。而仿射变换的矩阵表示根本就是4 x 4的。又扯远了,有兴趣的读者可以去看《计算机图形学——几何工具算法详解》。
一旦我们理解了“变换”这个概念,矩阵的定义就变成:
“矩阵是线性空间里的变换的描述。”
到这里为止,我们终于得到了一个看上去比较数学的定义。不过还要多说几句。教材上一般是这么说的,在一个线性空间V里的一个线性变换T,当选定一组基之后,就可以表示为矩阵。因此我们还要说清楚到底什么是线性变换,什么是基,什么叫选定一组基。线性变换的定义是很简单的,设有一种变换T,使得对于线性空间V中间任何两个不相同的对象x和y,以及任意实数a和b,有:
T(ax + by) = aT(x) + bT(y),
那么就称T为线性变换。
定义都是这么写的,但是光看定义还得不到直觉的理解。线性变换究竟是一种什么样的变换?我们刚才说了,变换是从空间的一个点跃迁到另一个点,而线性变换,就是从一个线性空间V的某一个点跃迁到另一个线性空间W的另一个点的运动。这句话里蕴含着一层意思,就是说一个点不仅可以变换到同一个线性空间中的另一个点,而且可以变换到另一个线性空间中的另一个点去。不管你怎么变,只要变换前后都是线性空间中的对象,这个变换就一定是线性变换,也就一定可以用一个非奇异矩阵来描述。而你用一个非奇异矩阵去描述的一个变换,一定是一个线性变换。有的人可能要问,这里为什么要强调非奇异矩阵?所谓非奇异,只对方阵有意义,那么非方阵的情况怎么样?这个说起来就会比较冗长了,最后要把线性变换作为一种映射,并且讨论其映射性质,以及线性变换的核与像等概念才能彻底讲清楚。我觉得这个不算是重点,如果确实有时间的话,以后写一点。以下我们只探讨最常用、最有用的一种变换,就是在同一个线性空间之内的线性变换。也就是说,下面所说的矩阵,不作说明的话,就是方阵,而且是非奇异方阵。学习一门学问,最重要的是把握主干内容,迅速建立对于这门学问的整体概念,不必一开始就考虑所有的细枝末节和特殊情况,自乱阵脚。
接着往下说,什么是基呢?这个问题在后面还要大讲一番,这里只要把基看成是线性空间里的坐标系就可以了。注意是坐标系,不是坐标值,这两者可是一个“对立矛盾统一体”。这样一来,“选定一组基”就是说在线性空间里选定一个坐标系。就这意思。
好,最后我们把矩阵的定义完善如下:
“矩阵是线性空间中的线性变换的一个描述。在一个线性空间中,只要我们选定一组基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述。”
理解这句话的关键,在于把“线性变换”与“线性变换的一个描述”区别开。一个是那个对象,一个是对那个对象的表述。就好像我们熟悉的面向对象编程中,一个对象可以有多个引用,每个引用可以叫不同的名字,但都是指的同一个对象。如果还不形象,那就干脆来个很俗的类比。
比如有一头猪,你打算给它拍照片,只要你给照相机选定了一个镜头位置,那么就可以给这头猪拍一张照片。这个照片可以看成是这头猪的一个描述,但只是一个片面的的描述,因为换一个镜头位置给这头猪拍照,能得到一张不同的照片,也是这头猪的另一个片面的描述。所有这样照出来的照片都是这同一头猪的描述,但是又都不是这头猪本身。
同样的,对于一个线性变换,只要你选定一组基,那么就可以找到一个矩阵来描述这个线性变换。换一组基,就得到一个不同的矩阵。所有这些矩阵都是这同一个线性变换的描述,但又都不是线性变换本身。
但是这样的话,问题就来了如果你给我两张猪的照片,我怎么知道这两张照片上的是同一头猪呢?同样的,你给我两个矩阵,我怎么知道这两个矩阵是描述的同一个线性变换呢?如果是同一个线性变换的不同的矩阵描述,那就是本家兄弟了,见面不认识,岂不成了笑话。
好在,我们可以找到同一个线性变换的矩阵兄弟们的一个性质,那就是:
若矩阵A与B是同一个线性变换的两个不同的描述(之所以会不同,是因为选定了不同的基,也就是选定了不同的坐标系),则一定能找到一个非奇异矩阵P,使得A、B之间满足这样的关系:
A = P-1BP
线性代数稍微熟一点的读者一下就看出来,这就是相似矩阵的定义。没错,所谓相似矩阵,就是同一个线性变换的不同的描述矩阵。按照这个定义,同一头猪的不同角度的照片也可以成为相似照片。俗了一点,不过能让人明白。
而在上面式子里那个矩阵P,其实就是A矩阵所基于的基与B矩阵所基于的基这两组基之间的一个变换关系。关于这个结论,可以用一种非常直觉的方法来证明(而不是一般教科书上那种形式上的证明),如果有时间的话,我以后在blog里补充这个证明。
这个发现太重要了。原来一族相似矩阵都是同一个线性变换的描述啊!难怪这么重要!工科研究生课程中有矩阵论、矩阵分析等课程,其中讲了各种各样的相似变换,比如什么相似标准型,对角化之类的内容,都要求变换以后得到的那个矩阵与先前的那个矩阵式相似的,为什么这么要求?因为只有这样要求,才能保证变换前后的两个矩阵是描述同一个线性变换的。当然,同一个线性变换的不同矩阵描述,从实际运算性质来看并不是不分好环的。有些描述矩阵就比其他的矩阵性质好得多。这很容易理解,同一头猪的照片也有美丑之分嘛。所以矩阵的相似变换可以把一个比较丑的矩阵变成一个比较美的矩阵,而保证这两个矩阵都是描述了同一个线性变换。
这样一来,矩阵作为线性变换描述的一面,基本上说清楚了。但是,事情没有那么简单,或者说,线性代数还有比这更奇妙的性质,那就是,矩阵不仅可以作为线性变换的描述,而且可以作为一组基的描述。而作为变换的矩阵,不但可以把线性空间中的一个点给变换到另一个点去,而且也能够把线性空间中的一个坐标系(基)表换到另一个坐标系(基)去。而且,变换点与变换坐标系,具有异曲同工的效果。线性代数里最有趣的奥妙,就蕴含在其中。理解了这些内容,线性代数里很多定理和规则会变得更加清晰、直觉。
发表评论
-
rails 上传文件和删除文件
2012-02-07 14:33 1121文件上传,页面代码: <%form_tag '/ ... -
c++中有关数组和指针的若干问题
2012-02-07 14:13 822<pre class="reply-t ... -
jbpm4在tomcat6中EL错误
2012-02-04 14:03 1089? jbpm4 在tomcat6 下面ssh2 这个错 ... -
Myeclipse自动加入struts 2 Core Libraries导致antlr错误
2012-02-04 13:29 995解决方法: 选择windows---preferenc ... -
分页组件
2012-02-03 12:23 927撒地方阿斯顿的撒啊受到爱上 ... -
2011-12-2
2012-02-02 15:34 752ubuntu系统root默认密码,每次开机会随机产生默 ... -
SQL SERVER 2008 中分页方法集锦
2012-02-01 09:34 1406<span style="font-s ... -
Android开发之ListView
2012-01-31 13:53 1271<p><br></p&g ... -
Android开发之SurfaceView
2012-01-11 15:34 1262<h1>Android开发 ... -
sso单点登录
2012-01-11 12:44 3961SSO单点登录 目 ... -
mxgraph之保存图片
2011-12-28 18:38 24501、写在前端:任何情况下,保存图片不可能只通过前台代码 ... -
Ajax实现省市二级联动(源代码)
2011-12-28 16:23 5021<span style="font-f ... -
2011NOKIA笔试题目
2011-12-21 09:29 1078今天去NOKIA机试,纯粹打酱油,没什么准备,题目貌似 ... -
终于把我的大部分BLOG复制到这里来了
2011-12-16 16:22 1041本来我的BLOG都在博客中国的<img src= ... -
MapXtreme2004代码 读取TAB表中的元素
2011-12-15 12:14 957<?xml:namespace prefix = ... -
这里的BLOG服务器也太不稳定了
2011-12-14 20:53 699<p class="MsoPlainT ... -
开启新的项目——基于电子邮件的知识管理系统
2011-12-14 19:59 944</span></font>& ... -
WIN98下运行DOTNET程序的一些问题
2011-12-14 17:24 814</span></font>& ... -
IHS静默安装(转)
2011-12-13 11:59 1336<span style="col ... -
Ajax&&GWT
2011-12-13 10:14 680工作的久了,一直忙于公司相关的技术和业务上,对于如今流 ...
相关推荐
《Gilbert线性代数+答案》是一套针对麻省理工学院线性代数课程的教材及配套解决方案,由著名数学家Gilbert Strang编著。这套资源包含了《Introduction to Linear Algebra》第四版的原文书以及对应的课后习题答案,为...
《上海交通大学线性代数教材》是一份专为学习线性代数的学子精心编纂的教学资料,由上海交通大学的专家团队倾力打造。线性代数是现代数学的重要分支,也是理工科学生必修的基础课程,对于理解和应用数学模型、解决...
《漫画线性代数》是一本以轻松、直观的方式介绍线性代数概念的书籍,特别适合初学者和对机器学习感兴趣的读者。通过漫画的形式,这本书将抽象的数学理论转化为易于理解的画面,帮助读者更轻松地掌握这一领域。 线性...
《线性代数》是同济大学应用数学系编著的经典教材,已更新至第四版,由高等教育出版社出版。这本教材广泛应用于国内的大学教育,尤其在理工科专业中,是学习线性代数的重要参考资料。线性代数作为一门基础的数学学科...
下面将对线性代数的基本概念进行详细的科普介绍。 **1. 向量** 向量是线性代数中的基本元素,它不仅有大小(或模),还有方向。在二维空间中,向量可以表示为带有箭头的线段,箭头的方向代表向量的方向,线段的长度...
从给定的文件中,我们可以提炼出许多重要的线性代数英文术语及其中文含义,下面将详细介绍这些术语。 1. Linear Algebra(线性代数):是研究向量、向量空间和线性映射的数学分支。 2. determinant(行列式):是...
- **基本线性代数子程序(BLAS)**:介绍了一套标准化的线性代数子程序库,这些子程序被广泛用于提高矩阵运算的效率。 - **矩阵乘法的优化**:详细讨论了如何优化矩阵乘法的执行过程,包括利用缓存局部性等技巧。 - ...
在《高等数学之线性代数(同济大学 第4版)》这本教材中,作者深入浅出地介绍了线性代数的基本理论与应用,涵盖了线性代数的主要知识点,为读者提供了全面而系统的理解框架。 首先,我们来探讨线性代数的核心概念之...
《线性代数同济版》是高等教育出版社出版的线性代数教材,该教材由同济大学数学系编写。在中国,这本书被广泛用作理工科大学生的教科书,并且经常是相关专业入学考试的必备参考书目。教材深入浅出,注重理论联系实际...
同济大学出版的《线性代数》第五版是一本广泛使用的教材,它深入浅出地介绍了线性代数的基本理论和方法。"线性代数(同济五版)习题答案与导学"是针对这本教材的学习辅助资料,旨在帮助读者理解和掌握课程内容,提高...
线性代数是数学的一个重要分支,它在计算机科学、物理学、工程学、经济学等多个领域都有广泛应用。同济大学出版社出版的《线性代数教材及同步辅导习题全解》第四版,是一本深入浅出地讲解线性代数理论与实践的教材,...
《线性代数(工程数学同济版)第五版》是工程数学领域内一部权威而全面的教材,它深入浅出地介绍了线性代数的基本理论与应用,为工程类专业学生提供了坚实的数学基础。线性代数作为现代数学的重要分支,其在工程、...
《李永乐线性代数考研最强笔记》是一份针对准备考研的学生精心编写的复习资料,旨在帮助考生全面深入地理解和掌握线性代数的核心概念、理论与应用。该笔记由知名数学教育家李永乐教授编著,以其丰富的教学经验为基础...
- **基础概念**:首先介绍线性方程组的基础概念,包括方程、变量、系数等。 - **解的概念**:接着讲解线性方程组的解的存在性和唯一性问题,如一致系统、不一致系统。 - **高斯消元法**:详细解释如何通过高斯消元法...
### 线性代数的几何意义 #### 引言 《线性代数的几何意义》这本书通过向量的概念全面地对线性代数中的关键概念进行了几何化的阐述,帮助读者更好地理解线性代数的基本原理及其在实际问题中的应用。 #### 向量与...
根据提供的文件信息,这份名为“线性代数与向量微积分讲义”的文档详细地介绍了线性代数和向量微积分的基本概念和运算规则。接下来,我将详细说明文档中提到的知识点。 ### 向量基础 向量是具有大小和方向的量。...
第二章的内容通常会深入介绍线性代数的基础概念和核心理论。在这个阶段,学生会接触到一系列关键的概念,包括向量、矩阵、线性组合、线性无关与依赖、基和坐标以及线性变换。 首先,我们来谈谈“向量”。向量是具有...
本文将对一些线性代数的基础知识点进行详细介绍。 首先,向量是线性代数中最基本的概念之一。在物理学中,向量代表有大小和方向的量,如速度、力等。在数学中,向量可以看作空间中的点或有序数组。例如,二维向量...
同济大学出版社出版的《线性代数》第四版是一本广泛使用的教材,它深入浅出地介绍了线性代数的基本理论和方法。"线性代数 习题全解(同济第四版)"提供了该教材所有习题的详尽解答,旨在帮助学习者巩固理解、深化对...
接下来,文档介绍了线性代数中的基本定理: 1. 维数定理:所有基中的向量数量相同。 2. 计数定理:列空间的维数加上零空间的维数等于列的数量。 3. 秩定理:列空间的维数等于行空间的维数,也等同于矩阵的秩。 4...