- 浏览: 114456 次
- 性别:
- 来自: 江西
-
文章分类
- 全部博客 (79)
- java (8)
- java虚拟机 (3)
- 学习类 (4)
- Java SE (26)
- java引用 (1)
- 工作总结。 (2)
- JSF (1)
- 软件架构 (1)
- Javascript (10)
- struts2 (1)
- eclipse (1)
- mysql (1)
- ArcGis (4)
- dojo (1)
- Extjs (1)
- jquery (4)
- 软件包 (1)
- 控件 (1)
- tuijian (0)
- 命令 (1)
- JAVAEE (1)
- goagent教程详细版猫理会 (0)
- python (0)
- tomcat (1)
- eclipse 出 can not create virtual machine (1)
- spring (3)
- 设计模式 (3)
- hibernate (1)
- dd (0)
- 样式 (0)
- http://blog.csdn.net/wisgood/article/details/11762427 (0)
最新评论
-
bz5011:
node.eachChild() 要延迟,等node.expa ...
EXTJS学习笔记----EXTJs中带复选框的tree,选中父节点时所有子节点也被选中 -
hvang1988:
[img][/img][url][/url][flash= ...
jquey 取值 -
xiaguangme:
写的很不错
java需要关注的知识点---HashMap -
perfect613:
sinly 写道perfect613 写道你好,有个问题请教一 ...
JS动态创建表格,动态设置属性,动态添加事件 . -
aiyingpower:
把哥的代码拿过来也不注明一下?
arcgis地图————————基础操作
treeMap插入元素的图解法:
插入前:
插入过程:
1
2
3
4
5
6
代码分析(转)
排序二叉树:
删除节点元素的时候,需要考虑的因素就比较多了比如删除一个节点后,得考虑这个节点是否有子节点,有几个子节点等等。
一般分为如下几个情况处理。
1):被删除的节点是叶子节点,没关系,不会影响大局,直接删除即可
2):被删节点只有左子树或者只有右子树,被删除的节点只有单子树的。直接将被删节点的子树赋给被删节点的父节点即可,也就是说被删节点的左子树代替被删节点成为被删结点父亲的左子树,而被删节点的右子树代替被删节点成为被删结点父亲的右子树。
3):被删节点既有左子树又有右字数,这种是比较麻烦的,也就是当不当、正不正只删除中间的节点。这个时候就要用被删节点最大左子树的节点或者用最小右子树的的节点代替被删节点。
添加节点:添加节点的过程实际上就是构建排序二叉树的过程。原理如下
1):首先有一个根节点
2):以根节点作为当前节点开始检索
3):新增节点和当前节点进行值比较
4):如果新节点比当前节点大,那么当前节点的右子节点作为新的当前节点,如果当前节点比当前节点小,那么当前节点的左子节点作为新的当前节点。
5):重复3和4步骤直到当前节点没有了子节点,那么新节点作为当前节点的子节点,具体作为左子节点还是有子节点得看新节点的值和当前节点值得比较。
treeMap删除节点的代码分析:
插入前:

插入过程:
1

2

3

4

5

6

代码分析(转)
public V put(K key, V value) { // 先以 t 保存链表的 root 节点 Entry<K,V> t = root; // 如果 t==null,表明是一个空链表,即该 TreeMap 里没有任何 Entry if (t == null) { // 将新的 key-value 创建一个 Entry,并将该 Entry 作为 root root = new Entry<K,V>(key, value, null); // 设置该 Map 集合的 size 为 1,代表包含一个 Entry size = 1; // 记录修改次数为 1 modCount++; return null; } int cmp; Entry<K,V> parent; Comparator<? super K> cpr = comparator; // 如果比较器 cpr 不为 null,即表明采用定制排序 if (cpr != null) { do { // 使用 parent 上次循环后的 t 所引用的 Entry parent = t; // 拿新插入 key 和 t 的 key 进行比较 cmp = cpr.compare(key, t.key); // 如果新插入的 key 小于 t 的 key,t 等于 t 的左边节点 if (cmp < 0) t = t.left; // 如果新插入的 key 大于 t 的 key,t 等于 t 的右边节点 else if (cmp > 0) t = t.right; // 如果两个 key 相等,新的 value 覆盖原有的 value, // 并返回原有的 value else return t.setValue(value); } while (t != null); } else { if (key == null) throw new NullPointerException(); Comparable<? super K> k = (Comparable<? super K>) key; do { // 使用 parent 上次循环后的 t 所引用的 Entry parent = t; // 拿新插入 key 和 t 的 key 进行比较 cmp = k.compareTo(t.key); // 如果新插入的 key 小于 t 的 key,t 等于 t 的左边节点 if (cmp < 0) t = t.left; // 如果新插入的 key 大于 t 的 key,t 等于 t 的右边节点 else if (cmp > 0) t = t.right; // 如果两个 key 相等,新的 value 覆盖原有的 value, // 并返回原有的 value else return t.setValue(value); } while (t != null); } // 将新插入的节点作为 parent 节点的子节点 Entry<K,V> e = new Entry<K,V>(key, value, parent); // 如果新插入 key 小于 parent 的 key,则 e 作为 parent 的左子节点 if (cmp < 0) parent.left = e; // 如果新插入 key 小于 parent 的 key,则 e 作为 parent 的右子节点 else parent.right = e; // 修复红黑树 fixAfterInsertion(e); // ① size++; modCount++; return null; }
排序二叉树:
删除节点元素的时候,需要考虑的因素就比较多了比如删除一个节点后,得考虑这个节点是否有子节点,有几个子节点等等。
一般分为如下几个情况处理。
1):被删除的节点是叶子节点,没关系,不会影响大局,直接删除即可
2):被删节点只有左子树或者只有右子树,被删除的节点只有单子树的。直接将被删节点的子树赋给被删节点的父节点即可,也就是说被删节点的左子树代替被删节点成为被删结点父亲的左子树,而被删节点的右子树代替被删节点成为被删结点父亲的右子树。
3):被删节点既有左子树又有右字数,这种是比较麻烦的,也就是当不当、正不正只删除中间的节点。这个时候就要用被删节点最大左子树的节点或者用最小右子树的的节点代替被删节点。
添加节点:添加节点的过程实际上就是构建排序二叉树的过程。原理如下
1):首先有一个根节点
2):以根节点作为当前节点开始检索
3):新增节点和当前节点进行值比较
4):如果新节点比当前节点大,那么当前节点的右子节点作为新的当前节点,如果当前节点比当前节点小,那么当前节点的左子节点作为新的当前节点。
5):重复3和4步骤直到当前节点没有了子节点,那么新节点作为当前节点的子节点,具体作为左子节点还是有子节点得看新节点的值和当前节点值得比较。
treeMap删除节点的代码分析:
private void deleteEntry(Entry<K,V> p) { modCount++; size--; // 如果被删除节点的左子树、右子树都不为空 if (p.left != null && p.right != null) { // 用 p 节点的中序后继节点代替 p 节点 Entry<K,V> s = successor (p); p.key = s.key; p.value = s.value; p = s; } // 如果 p 节点的左节点存在,replacement 代表左节点;否则代表右节点。 Entry<K,V> replacement = (p.left != null ? p.left : p.right); if (replacement != null) { replacement.parent = p.parent; // 如果 p 没有父节点,则 replacemment 变成父节点 if (p.parent == null) root = replacement; // 如果 p 节点是其父节点的左子节点 else if (p == p.parent.left) p.parent.left = replacement; // 如果 p 节点是其父节点的右子节点 else p.parent.right = replacement; p.left = p.right = p.parent = null; // 修复红黑树 if (p.color == BLACK) fixAfterDeletion(replacement); // ① } // 如果 p 节点没有父节点 else if (p.parent == null) { root = null; } else { if (p.color == BLACK) // 修复红黑树 fixAfterDeletion(p); // ② if (p.parent != null) { // 如果 p 是其父节点的左子节点 if (p == p.parent.left) p.parent.left = null; // 如果 p 是其父节点的右子节点 else if (p == p.parent.right) p.parent.right = null; p.parent = null; } } }
发表评论
-
日志记录工具类
2012-11-09 15:51 2036import org.apache.log4j.Log ... -
重入锁
2012-02-08 14:18 1238重入锁(ReentrantLock)是一种递归无阻塞的同步机制 ... -
java需要关注的知识点---并发之加入一个新线程
2012-01-03 11:29 934package com.thread; public ... -
java需要关注的知识点---并发之后台线程
2011-12-30 16:07 964所谓的后台线程,是指在程序运行的时候在后台提供一种通用服务的线 ... -
java需要关注的知识点---并发之从任务中产生返回值
2011-12-29 16:04 759class TaskWithResult implemen ... -
java需要关注的知识点---并发之使用Executor
2011-12-29 16:00 994public class CachedthreadPool ... -
java需要关注的知识点---并发之定义任务
2011-12-29 12:53 8361:定义任务: public class LiftOff ... -
java需要关注的知识点---I0之XML的生成
2011-12-27 17:47 997package com.io; import java. ... -
java需要关注的知识点---I0之对象序列化
2011-12-27 10:59 9991。对象序列化: 序列化是什么: 序列化就是将一个对象的状 ... -
java需要关注的知识点---I0之压缩
2011-12-26 15:38 9571.GZIP压缩: public class GZIPPc ... -
java需要关注的知识点--新I0(NIO)之大文件读取
2011-12-22 14:43 2891在读取大文件的时候,采用管道方式进行分流,使用byteBuff ... -
java需要关注的知识点---Charset
2011-12-21 10:25 9081.Charset 名称必须以字母或数字开头。空字符串不是合法 ... -
java需要关注的知识点---I0之获取特殊属性
2011-12-20 17:51 7711.获取文本的编码方式: String encoding ... -
java需要关注的知识点---I0之新IO(NI0)
2011-12-20 15:40 1217缓冲器操纵数据: ByteBuffer是数据移进移出通道的唯一 ... -
java需要关注的知识点---标准I0流
2011-12-20 11:16 751System.in public class System ... -
java需要关注的知识点---IO流
2011-12-16 17:06 9321.无论何时使用readLine(). ... -
java需要关注的知识点---HashSet
2011-11-28 15:20 10851.构造方法: public HashSet() { ... -
java需要关注的知识点---Vector
2011-11-24 17:53 10451.默认初始大小 10. 2.Vector是一个object数 ... -
java需要关注的知识点---LinkedList
2011-11-24 10:19 3301LinkedList是采用双向链表来存储数据: Linked ... -
volatile 修饰符
2011-11-23 16:39 1061volatile修饰符告诉编译程序不要对该变量所参与的操作进行 ...
相关推荐
内容概要:美国大学生数学建模竞赛(MCM/ICM)由美国数学及其应用联合会主办,旨在提高学生运用数学知识和计算机技术解决实际问题的能力,培养团队合作精神和创新思维。竞赛始于1985年,至今已有近40年历史,是全球最具影响力的数学建模竞赛之一。竞赛分为MCM和ICM两部分,涵盖多个领域,参赛队伍需在4天内完成题目的分析、建模、求解和论文撰写。竞赛面向全球在校大学生,设有多个奖项,获奖对学生的升学和就业有积极影响。参赛队伍应提前学习数学建模知识,掌握常用软件工具,如MATLAB、Python等,同时加强团队协作和时间管理能力。; 适合人群:全球范围内的在校大学生,特别是对数学建模感兴趣的学生。; 使用场景及目标:①提高学生运用数学知识和计算机技术解决实际问题的能力;②培养团队合作精神和创新思维;③为升学和就业积累宝贵经验。; 阅读建议:参赛队伍应提前做好充分准备,学习相关数学建模知识,熟悉常用软件工具,加强团队协作和时间管理能力,以应对竞赛的挑战。
内容概要:本文详细介绍了光伏三相并网逆变器的MATLAB仿真过程,涵盖了从光伏板输出直流电经过MPPT升压、三相桥逆变成交流,再到LCL滤波器滤波并网的全过程。具体包括MPPT算法(如扰动观察法)、坐标变换(Clarke变换和Park变换)、锁相环(采用二阶广义积分器SOGI)、电流内环PI控制以及SPWM调制和LCL滤波器的设计。每个环节都有详细的代码实现和调试技巧,确保并网电流的质量和稳定性。 适合人群:具备电力电子和控制系统基础知识的研究人员、工程师和技术爱好者。 使用场景及目标:适用于希望深入了解光伏并网逆变器工作原理及其仿真的技术人员。目标是掌握从光伏板到并网的完整控制流程,能够独立进行相关仿真和优化。 其他说明:文中提供了大量实用的代码片段和调试经验,帮助读者更好地理解和应用这些技术。同时强调了实际调试过程中可能遇到的问题及解决方案。
内容概要:本文详细介绍了永磁同步电机采用高频方波注入方法进行低速带载启动的仿真模型及其优化。首先,文章阐述了高频方波注入的基本原理,包括选择2.5kHz的注入频率以及在旋转坐标系下的d轴方向进行方波注入的原因。接着,文章深入探讨了状态机设计,将整个流程分为三个阶段:转子预定位、高频注入阶段和平滑切换到反电势观测器。此外,还讨论了电流环参数的计算方法,强调了根据电机参数精确计算PI调节器参数的重要性。同时,文章详细解释了锁相环(PLL)的实现,指出PLL带宽应设为高频信号频率的1/10以避免震荡。最后,文章分享了一些调试技巧,如处理逆变器死区补偿和合理设置注入电压幅值。 适合人群:从事永磁同步电机控制研究与开发的工程师和技术人员,尤其是对高频方波注入技术和无感控制感兴趣的读者。 使用场景及目标:适用于希望深入了解永磁同步电机高频方波注入技术的工程师,帮助他们掌握从仿真建模到实际应用的全过程,确保在低速带载启动过程中实现稳定可靠的控制效果。 其他说明:文中提供了详细的代码片段和调试建议,有助于读者更好地理解和实践相关技术。同时,附带的文档和参考文献也为进一步研究提供了丰富的资料。
内容概要:本文详细探讨了永磁同步电机(PMSM)在全速度范围内实现无位置传感器控制的方法和技术难点。主要内容涵盖高速段采用超螺旋滑模(Super Twisting Sliding Mode)观测器进行位置估计,以及低速段利用高频方波注入(High Frequency Injection)方法获取转子位置信息。针对两者之间的平滑切换提出了基于滞环和置信度加权的软切换策略,并介绍了扩张状态观测器(ESO)的应用以提高系统的鲁棒性和稳定性。文中提供了具体的MATLAB/Simulink代码片段用于实现各个控制环节,强调了参数调节的重要性及其实践经验。 适合人群:从事电机控制系统研究的专业人士、研究生及以上学历的学生,尤其是对无位置传感器控制感兴趣的科研工作者。 使用场景及目标:适用于需要精确控制PMSM应用场景的研发项目,如电动汽车驱动系统、工业自动化设备等。主要目标是掌握PMSM无位置传感器控制的关键技术和实现方法,提升系统的可靠性和性能。 其他说明:文中不仅分享了理论知识,还包括大量实用的编程技巧和调试建议,有助于读者快速理解和应用所介绍的技术。此外,作者还特别指出了一些常见的错误和注意事项,帮助读者规避潜在的问题。
爬取淘宝京东(1)
solcx、web3搭配使用
内容概要:本文介绍了一种基于偏置场校正的改进模糊c-均值(FCM)聚类图像分割算法。传统的FCM算法在处理噪声较多的图像时表现不佳,为此,作者提出了引入偏置场校正项的方法,以提高算法的鲁棒性和分割精度。文中详细描述了算法的实现步骤,包括数据加载与预处理、目标函数的设计、迭代更新过程以及实验结果分析。实验结果显示,改进后的算法在噪声较多的图像上显著提高了分割效果。 适合人群:从事计算机视觉、图像处理领域的研究人员和技术人员,尤其是对模糊聚类算法和偏置场校正感兴趣的开发者。 使用场景及目标:适用于医学图像处理等领域,特别是在处理带有噪声和强度不均匀性的图像时,能够有效改善分割质量,提供更精确的图像分析工具。 其他说明:本文不仅提供了详细的理论解释,还附有MATLAB代码实现,便于读者理解和实践。此外,文中还分享了一些实用的经验和技巧,如参数选择、性能优化等,有助于读者更好地掌握和应用该算法。
内容概要:本文详细介绍了CSR公司BlueCore3-Flash芯片,这款2004年推出的蓝牙单芯片解决方案集成了射频前端、基带处理和6Mbit闪存。文章首先回顾了其硬件架构,包括RF前端、ARM7 TDMI处理器、DSP协处理器及其存储管理。接着深入探讨了DSP协处理器对CVSD编码的优化以及RF部分的天线匹配和寄存器配置技巧。文中还提到了Flash分区管理和一些有趣的细节,如复活节彩蛋代码和通过GPIO模拟I2C控制EEPROM的方法。此外,作者分享了许多实用的经验教训,如Flash编程时序要求、寄存器配置陷阱等。最后强调了800页逆向分析报告的价值,特别是在射频校准方面的指导意义。 适合人群:从事蓝牙开发的工程师和技术爱好者,尤其是对早期蓝牙技术和硬件设计感兴趣的读者。 使用场景及目标:帮助读者深入了解BlueCore3-Flash芯片的工作原理和设计思路,掌握射频调试、DSP优化等关键技术,避免常见错误,提高开发效率。 其他说明:尽管BlueCore3-Flash已停产多年,但其设计理念和技术细节仍然值得借鉴,对于理解和优化现代蓝牙低能耗(BLE)系统具有重要参考价值。
内容概要:本文深入探讨了自动泊车系统中平行泊车路径规划的关键技术,特别是五次多项式曲线的应用及其优化方法。首先介绍了五次多项式的基本概念和数学模型,展示了如何利用六阶多项式来精确描述车辆从初始位置到最终入库位置的完整运动过程。接着详细解释了路径规划过程中面临的挑战,如狭窄车位、复杂环境等因素的影响,并提出了相应的解决方案,包括曲率优化、碰撞检测以及路径分段处理等。最后通过具体实例演示了优化前后路径性能的变化,证明了经过改进的五次多项式能够显著提高泊车的成功率和平顺性。 适合人群:对自动驾驶技术感兴趣的工程师和技术爱好者,尤其是从事智能交通系统研究的专业人士。 使用场景及目标:适用于希望深入了解自动泊车算法内部机制的研究人员,帮助他们掌握五次多项式在路径规划中的应用技巧,从而提升相关项目的开发效率和技术水平。 其他说明:文中提供了大量Python代码片段用于辅助理解和实践,同时也分享了一些实际项目中遇到的问题及解决经验,对于想要快速入门并应用于实际工作的读者非常有价值。
内容概要:本文档详细介绍了GitHub的使用方法,从基础概念到高级功能,帮助用户全面掌握GitHub的操作。首先解释了GitHub作为基于Git的代码托管平台的功能,包括支持多人协作开发、提供Web界面管理代码仓库、issue跟踪、Wiki文档和自动化工作流等特性。接着,逐步指导用户完成入门操作,如注册账号、创建仓库、安装Git以及配置账户信息。文档还列举了核心操作命令,涵盖基础工作流(克隆、添加、提交、推送)、分支管理和常用辅助命令。对于团队协作,文中描述了邀请协作者、使用Fork和Pull Request的方式,以及Issue跟踪机制。最后,介绍了GitHub的高级功能,如GitHub Pages、GitHub Actions、Wiki和Project看板,并提供了学习资源和遇到问题时的解决途径。 适合人群:适用于初学者及有一定编程经验但不熟悉GitHub的开发者。 使用场景及目标:①帮助个人或团队快速搭建并管理代码仓库;②提高代码版本控制能力,确保项目开发流程顺畅;③利用GitHub提供的协作工具提升团队合作效率。 阅读建议:由于文档内容详尽,建议初次接触GitHub的读者按照章节顺序逐步学习,同时动手实践每个操作步骤,遇到问题时参考提供的学习资源或求助于社区。
基于MATLAB的多层膜光学计算算法(转移矩阵法)源码+使用说明文档.zip 一个基于MATLAB的多层膜光学计算算法。当光束击中具有不同折射率的多层系统时,它会被反射、折射和吸收,这可以通过菲涅尔方程来推导。但随着层数的增加,数学计算变得越来越复杂。这个项目提供了一个基于传输矩阵方法的MATLAB算法,用于计算多层膜系统的光学特性。 主要功能点 基于传输矩阵方法的多层膜光学特性计算 包括反射率、透射率和吸收率的计算 支持任意数量的层数 技术栈 MATLAB
跨阻放大器设计for高速光通信
1、文件说明: Centos8操作系统textern-0.8-1.el8.rpm以及相关依赖,全打包为一个tar.gz压缩包 2、安装指令: #Step1、解压 tar -zxvf textern-0.8-1.el8.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm
1、文件说明: Centos8操作系统texlive-xstring-7:20180414-23.el8.rpm以及相关依赖,全打包为一个tar.gz压缩包 2、安装指令: #Step1、解压 tar -zxvf texlive-xstring-7:20180414-23.el8.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm
内容概要:本文详细介绍了基于Simulink平台构建的电动汽车仿真模型,涵盖了行驶阻力模型、工作模式切换逻辑以及驾驶员模型等多个方面。行驶阻力模型通过MATLAB函数实现了滚动阻力、空气阻力和坡度阻力的精确计算,揭示了不同车速下各阻力成分的变化规律。工作模式切换部分利用Stateflow状态机实现了纯电驱动、能量回收和混合动力之间的平滑过渡,确保了系统的稳定性和高效性。驾驶员模型则采用PID控制方法,优化了车速跟踪性能,特别是在CLTC工况下的表现更为突出。此外,文章还对比了NEDC和CLTC两种工况下的能耗差异,展示了CLTC工况下频繁启停对能耗的影响。 适合人群:从事电动汽车研究与开发的技术人员,尤其是熟悉Simulink和MATLAB的工程师。 使用场景及目标:帮助研究人员深入理解电动汽车的工作原理及其仿真建模方法,为实际产品设计提供理论支持和技术指导。 其他说明:文中提供了大量具体的代码片段和仿真结果,便于读者理解和复现相关实验。同时提醒读者关注实际路况与仿真环境之间的差异,强调仿真结果仅供参考。
串口AT操作调试程序
内容概要:本文详细介绍了基于空间矢量脉宽调制(SVPWM)的T型三电平LCL型并网逆变器在Matlab/Simulink中的仿真方法及其优化技巧。首先,文章阐述了T型三电平逆变器的优点,如低开关损耗和高效抑制高频谐波的能力。接着,深入探讨了主电路建模、电流双闭环控制、SVPWM生成以及LCL滤波器的设计。针对常见的仿真问题,如代数环错误、谐振尖峰和波形震荡,提供了具体的解决方案。此外,还分享了一些实用的经验公式和调试技巧,确保模型在不同工况下的稳定性和性能。 适合人群:从事电力电子、新能源并网系统的工程师和技术人员,尤其是对T型三电平逆变器和SVPWM技术感兴趣的读者。 使用场景及目标:适用于光伏和储能系统的并网逆变器设计与仿真。主要目标是在THD和动态响应之间取得良好平衡,提高并网电流质量,降低谐波失真,确保系统稳定性。 其他说明:文中提供的代码片段和参数设置有助于快速搭建和调试仿真模型,同时附带的波形对比图直观展示了优化前后的效果。建议读者在实践中结合实际情况进行参数调整,以达到最佳性能。
1、文件说明: Centos8操作系统thrift-glib-0.13.0-2.el8.rpm以及相关依赖,全打包为一个tar.gz压缩包 2、安装指令: #Step1、解压 tar -zxvf thrift-glib-0.13.0-2.el8.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm
内容概要:本文详细介绍了基于PLC(可编程逻辑控制器)的四层电梯系统的组态画面设计与实现。首先解释了PLC的基本概念及其在工业控制中的重要性,然后深入探讨了电梯控制的具体实现方法,如楼层呼叫响应、按钮互锁、轿厢动画平滑移动以及紧急停止等功能的编程技巧。文章还分享了一些调试过程中遇到的问题及解决方案,强调了组态画面作为电梯系统‘仪表盘’的重要性和其实现细节。 适合人群:对工业自动化控制感兴趣的工程师和技术爱好者,尤其是有一定PLC编程基础的人群。 使用场景及目标:适用于希望深入了解PLC编程和组态画面设计的技术人员。目标是掌握如何利用PLC实现复杂逻辑控制,并通过组态画面直观展示电梯运行状态,提高系统的可靠性和用户体验。 其他说明:文中不仅提供了具体的编程示例,还分享了许多实用的经验和技巧,帮助读者更好地理解和应用相关技术。此外,作者还提到了一些常见的陷阱和注意事项,有助于避免潜在的问题。
爬百度文库ppt(1)