`
zhuyuanxiang
  • 浏览: 130672 次
  • 性别: Icon_minigender_1
  • 来自: 成都
社区版块
存档分类
最新评论

温伯格的金玉四言

阅读更多

温伯格的金玉四言
——至开始科学生涯的学生
Steven Weinberg: Four golden lessons
原文刊自2003年11月23日《自然》杂志(<NATURE>)

史蒂文?温伯格 著
张旭 译

     很久以前,当我得到学士学位时,物理学文献对我而言是一个广阔而未知的大海。若不探察大海的每一部分并悉心编制海图,我将无法展开我自己的任何研究。若不了解他人已经完成的工作,我怎样才能开展自己的工作呢?幸运的是,我在研究生院的第一年,有幸接触到一些资深物理学家。他们使我超越原有观念的束缚,坚持要求我必须开始进行研究,在前行中挖掘需要学习的内容。如此一来,沉浮全看自己。我惊讶地发现他们的建议竟然可行。我努力尽快获得博士学位——虽然当我拿到学位时,对于物理学几乎一无所知。但是,我懂得了一个很重要的道理:没有人了解全部,你也不必强求。
     接下来要了解的一个经验,将继续使用我关于海洋的隐喻——当你畅游而没有沉没时,你应该去挑战汹涌的海水。当上个世纪六十年代末期,我执教于麻省理工学院时,一个学生告诉我,他准备进入广义相对论的研究领域,而不是进入我所正在从事的基本粒子领域。因为前者的基本原理如此清晰明了,而后者却对他而言却显得一片混乱。我猛然领悟到他恰恰已经给出做出相反选择的绝佳理由。当时,粒子物理是一个仍然存在创造性工作的领域。虽然在六十年代该领域的确一片混乱,但自从那时起,许多理论物理学家和实验物理学家已开始理出头绪,把许多实验事实(更进步说,几乎所有事实)纳入一个被称为“标准模型”的优美理论中。我的建议是:追寻混乱——那才是行动之所在。
     我的第三个建议可能最难以接受——宽容地对待自己空耗的时间。学生仅仅被要求解决那些他们的教授认为是可以解决的问题(除非教授非常残酷)。另外,问题的科学意义并无关紧要——为了通过课程,不得不解决这些问题。但是在真实世界中,很难知道哪些问题是重要的,而且你无从知晓在历史的既定时刻一个问题是否可以被解决。在二十世纪开始时,几位物理学领袖包括洛仑兹和麦克尔逊,尝试建立一套电子理论。部分目的是为解开无法探测到地球相对以太运动效应之谜。我们现在知道他们试图破解的问题本身就是错误的。在当时,没有人能够建立一套成功的电子理论,因为量子力学尚未被创立。到了1905年,天才的爱因斯坦认识到,运动的时空度量效应才是问题所在。据此,他创立了狭义相对论。当你无法确定什么是研究中真正的问题所在时,你在实验室或者书桌前的大部分时间将被无情消耗掉。如果你想具备创造性,那么你将不得不习惯于投入大把时间而无任何创造性,习惯于在科学知识的海洋里徘徊不前。
最后,了解一些科学史,至少你自己所在科学分支的历史。如此建议的最基本原因是,科学史对你自己的科学工作有些实际的用处。例如,科学家们偶尔会因轻信那些从弗朗西丝?培根到托马思?库恩和卡尔?波普等哲学家们提出的过于简单的科学模型而受桎梏。对付科学哲学最好的解药莫过具备科学史知识。
     更为重要的是,科学史可以使你觉得自己的工作看起来更有价值。作为一位科学家,你可能将不会富有。你的朋友和亲戚可能无法理解你的工作。另外,如果你从事于类似基本粒子物理这样的领域,你甚至不能体会到工作立刻有用的满足感。但是,通过认识到自己的科学工作将是历史的一部分,会使你获得极大的满足。
     回首100年前,到1903年。在1903年,谁是大英帝国首相,谁是合众国总统,这个问题对现在而言能有多重要呢?真正有着重要意义的是,欧内斯特?卢瑟福和弗雷德里克?索迪揭示出放射性的本质!这个工作有着实际的应用(当然!),但是更重要的是它的文化含义。理解了放射现象,使得物理学家可以解释太阳和地心如何在百万年后仍旧保持高温。这样,最终解决对地球年龄问题的科学争论。地质学家和古生物学家的认识是正确的,实际上地球和太阳的年龄非常之大。在此之后,基督教徒和犹太教徒要么不得不放弃对圣经中所谓的真理的信任,要么就置自身于非理性。这仅仅是从伽利略经由牛顿和达尔文到现在不断地削弱宗教教条主义桎梏中的一步。只要阅读当今的报纸,就足以让你认识到这个工作还远远没有结束。不过,这是一项创造人类文明的工作,科学家足以对此引以为豪。
______________________________________________________________________________
史蒂文?温伯格现任教于美国德克萨斯大学奥斯汀分校物理学系。因创立基本粒子间弱相互作用和电磁相互作用统一理论,并预言了弱中性流的存在,温伯格与格拉肖、萨拉姆共同获得1979年诺贝尔物理学奖。

Steven Weinberg: Four golden lessons
NATURE | VOL 426 | 27 NOVEMBER 2003 |

    When I received my undergraduate degree — about a hundred years ago — the physics literature seemed to me a vast, unexplored ocean, every part of which I had to chart before beginning any research of my own. How could I do anything without knowing everything that had already been done? Fortunately, in my first year of graduate school, I had the good luck to fall into the hands of senior physicists who insisted, over my anxious objections, that I must start doing research, and pick up what I needed to know as I went along. It was sink or swim. To my surprise, I found that this works. I managed to get a quick PhD — though when I got it I knew almost nothing about physics. But I did learn one big thing: that no one knows everything, and you don't have to.
    Another lesson to be learned, to continue using my oceanographic metaphor, is that while you are swimming and not sinking you should aim for rough water. When I was teaching at the Massachusetts Institute of Technology in the late 1960s, a student told me that he wanted to go into general relativity rather than the area I was working on, elementary particle physics, because the principles of the former were well known, while the latter seemed like a mess to him. It struck me that he had just given a perfectly good reason for doing the opposite. Particle physics was an area where creative work could still be done. It really was a mess in the 1960s, but since that time the work of many theoretical and experimental physicists has been able to sort it out, and put everything (well, almost everything) together in a beautiful theory known as the standard model. My advice is to go for the messes — that's where the action is.
    My third piece of advice is probably the hardest to take. It is to forgive yourself for wasting time. Students are only asked to solve problems that their professors (unless unusually cruel) know to be solvable. In addition, it doesn't matter if the problems are scientifically important — they have to be solved to pass the course. But in the real world, it's very hard to know which problems are important, and you never know whether at a given moment in history a problem is solvable. At the beginning of the twentieth century, several leading physicists, including Lorentz and Abraham, were trying to work out a theory of the electron. This was partly in order to understand why all attempts to detect effects of Earth's motion through the ether had failed. We now know that they were working on the wrong problem. At that time, no one could have developed a successful theory of the electron, because quantum mechanics had not yet been discovered. It took the genius of Albert Einstein in 1905 to realize that the right problem on which to work was the effect of motion on measurements of space and time. This led him to the special theory of relativity. As you will never be sure which are the right problems to work on, most of the time that you spend in the laboratory or at your desk will be wasted. If you want to be creative, then you will have to get used to spending most of your time not being creative, to being becalmed on the ocean of scientific knowledge.
    Finally, learn something about the history of science, or at a minimum the history of your own branch of science. The least important reason for this is that the history may actually be of some use to you in your own scientific work.For instance, now and then scientists are hampered by believing one of the oversimplified models of science that have been proposed by philosophers from Francis Bacon to Thomas Kuhn and Karl Popper. The best antidote to the philosophy of science is a knowledge of the history of science.
    More importantly, the history of science can make your work seem more worthwhile to you. As a scientist, you're probably not going to get rich. Your friends and relatives probably won't understand what you're doing. And if you work in a field like elementary particle physics, you won't even have the satisfaction of doing something that is immediately useful. But you can get great satisfaction by recognizing that your work in science is a part of history.
    Look back 100 years, to 1903. How important is it now who was Prime Minister of Great Britain in 1903, or President of the United States? What stands out as really important is that at McGill University, Ernest Rutherford and Frederick Soddy were working out the nature of radioactivity. This work (of course!) had practical applications, but much more important were its cultural implications. The understanding of radioactivity allowed physicists to explain how the Sun and Earth's cores could still be hot after millions of years. In this way, it removed the last scientific objection to what many geologists and paleontologists thought was the great age of the Earth and the Sun. After this, Christians and Jews either had to give up belief in the literal truth of the Bible or resign themselves to intellectual irrelevance. This was just one step in a sequence of steps from Galileo through Newton and Darwin to the present that, time after time, has weakened the hold of religious dogmatism. Reading any newspaper nowadays is enough to show you that this work is not yet complete. But it is civilizing work, of which scientists are able to feel proud.
__________________________________________
■ Steven Weinberg is in the Department of Physics, the University of Texas at Austin, Texas 78712, USA. This essay is based on a commencement talk given by the author at the Science Convocation at McGill University in June 2003.



朱远翔 2007-06-07 20:15 发表评论
分享到:
评论

相关推荐

    成为技术领导者3 温伯格

    成为技术领导者2 温伯格经典书籍系列之一。 温伯格书籍说明参见《对温伯格书籍层次的分析》

    引力论与宇宙论(温伯格)

    《引力论与宇宙论》是著名物理学家史蒂文·温伯格所著,他在这本书中对广义相对论进行了深入探讨,并对宇宙论的一些基本问题进行了阐述。本书是学习广义相对论的经典之作,不仅对理论物理专业人士有重要参考价值,也...

    用拓扑结构解决温伯格悖论

    很久以前,温伯格从最初的原理就表明,电流和磁流之间的单个光子交换的振幅违反了洛伦兹不变性。 当时明显的结论是,量子场论中不允许单极子。 自从发现拓扑单极子以来,就出现了一个悖论。 一方面,拓扑单极子是在...

    成为技术领导者 温伯格

    成为技术领导者 温伯格经典书籍系列之一。 温伯格书籍说明参见《对温伯格书籍层次的分析》

    对温伯格书籍层次的分析

    在此基础上,他的《质量软件管理》四卷本系列详细阐述了系统思维、度量、协作和变革管理在软件质量管理中的应用,为技术项目的成功提供了全面的指导。 温伯格的书籍层次分析展现了他在IT领域的深刻见解,从个人思维...

    探索需求_设计前的质量(温伯格).part1

    温伯格(Gerald M. Weinberg)首要的贡献集中于软件领域,他是从个体心理、组织行为和企业文化角度研究软件管理和软件工程的权威和代表人物。在超过40年的软件职业生涯中,温伯格从事过软件开发,软件项目管理、软件...

    温伯格“探索需求”交流摘要

    ### 温伯格“探索需求”交流摘要——深入解析 #### UML的理解与应用 **标题:“温伯格“探索需求”交流摘要”** **描述:“如果你希望你的涉众懂得UML,你就误解了UML这个工具和如何使用UML…我们看到过很多事例...

    温伯格算子的三环实现的系统分类

    有四千多个连接的拓扑。 然而,这些中的绝大多数是对低阶中微子质量图的无限校正,并且只有很小一部分的收益率模型,其中三环图是中微子质量矩阵的主要贡献。 我们确定了73种拓扑结构,这些拓扑结构可以导致真正的...

    温伯格中微子及其跷跷板起源的新Weinberg算子

    它可能来自于一个模型,其中两个希格斯二重态在U(1)'规范组下携带相同的电荷,这禁止了普通的温伯格算子,但允许混合一个。 新的Weinberg算子可以通过在U(1)'下带相反电荷的两个右手中微子生成,在完整模型中...

    成为技术领导者2 温伯格

    成为技术领导者2 温伯格经典书籍系列之一。 温伯格书籍说明参见《对温伯格书籍层次的分析》

    【第一推动丛书】[亚原子粒子的发现(温伯格著杨建邺肖明译)

    没事看看,一本还不错的书,(温伯格著杨建邺肖明译)。

    探索需求_设计前的质量(温伯格).part3

    温伯格(Gerald M. Weinberg)首要的贡献集中于软件领域,他是从个体心理、组织行为和企业文化角度研究软件管理和软件工程的权威和代表人物。在超过40年的软件职业生涯中,温伯格从事过软件开发,软件项目管理、软件...

    探索需求_设计前的质量(温伯格).part2

    温伯格(Gerald M. Weinberg)首要的贡献集中于软件领域,他是从个体心理、组织行为和企业文化角度研究软件管理和软件工程的权威和代表人物。在超过40年的软件职业生涯中,温伯格从事过软件开发,软件项目管理、软件...

    成为技术领导者-温伯格(第一部分)

    成为技术领导者,温伯格非常好的一本书,推荐

    引力论和宇宙论:广义相对论的原理和应用

    《引力论和宇宙论:广义相对论的原理和应用》是著名物理学家史蒂文·温伯格的一部经典著作,自初次出版以来,它一直是引力论和宇宙学领域的重要参考书。这本书深入浅出地阐述了广义相对论的基本原理,并探讨了其在...

    成为技术领导者(全)—温伯格

    成为技术领导者(全)—温伯格

    普朗克论科尔曼-温伯格通胀

    我们表明,在小范围的科尔曼-温伯格膨胀中,观察到的扰动幅度需要极小程度的胀气四次耦合,这可能是辐射起源的标志。 但是,在标准宇宙学场景中获得的光谱指数竟然在普朗克数据的2σ区域之外。 当调用非标准的宇宙...

    咨询的奥秘(温伯格著)

    本书的思想深刻,语言幽默、生动。温伯格的风格就是这样:他把自己的经验和知识与我一起分享,是我从阅读中备受启发,而不会有一丝防备。它远不只是一本咨询顾问手册,它实际上是一本讲述如何把握自己成长的书。

    重力科尔曼-温伯格势及其有限温度对应物

    研究了引力子与无质量标量场最小耦合的情况下的科尔曼-温伯格(CW)现象。 如果物质部门中不存在自相互作用项,则单环效应将完全消失。 单环有效电势以获取虚部的形式发展为不稳定性,该虚部可以追溯到引力子传播器...

Global site tag (gtag.js) - Google Analytics