因为最近配置了Hadoop的伪分布式和Hbase和Zookeepr的集群环境。现在正准备研究Hadooop,今天第一个Map/Reduce,启动成功,成就啊。
package org.frame.base.hbase.hadoop;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
/**
* TokenizerMapper 继续自 Mapper<Object, Text, Text, IntWritable>
*
* [一个文件就一个map,两个文件就会有两个map]
* map[这里读入输入文件内容 以" \t\n\r\f" 进行分割,然后设置 word ==> one 的key/value对]
*
* @param Object Input key Type:
* @param Text Input value Type:
* @param Text Output key Type:
* @param IntWritable Output value Type:
*
* Writable的主要特点是它使得Hadoop框架知道对一个Writable类型的对象怎样进行serialize以及deserialize.
* WritableComparable在Writable的基础上增加了compareT接口,使得Hadoop框架知道怎样对WritableComparable类型的对象进行排序。
*
* @author yangchunlong.tw
*
*/
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
/**
* IntSumReducer 继承自 Reducer<Text,IntWritable,Text,IntWritable>
*
* [不管几个Map,都只有一个Reduce,这是一个汇总]
* reduce[循环所有的map值,把word ==> one 的key/value对进行汇总]
*
* 这里的key为Mapper设置的word[每一个key/value都会有一次reduce]
*
* 当循环结束后,最后的确context就是最后的结果.
*
* @author yangchunlong.tw
*
*/
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
/**
* 这里必须有输入/输出
*/
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);//主类
job.setMapperClass(TokenizerMapper.class);//mapper
job.setCombinerClass(IntSumReducer.class);//作业合成类
job.setReducerClass(IntSumReducer.class);//reducer
job.setOutputKeyClass(Text.class);//设置作业输出数据的关键类
job.setOutputValueClass(IntWritable.class);//设置作业输出值类
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));//文件输入
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));//文件输出
System.exit(job.waitForCompletion(true) ? 0 : 1);//等待完成退出.
}
}
分享到:
相关推荐
在标题中的"WordCount2_hadoopwordcount_"可能指的是Hadoop WordCount的第二个版本,通常是在Hadoop 2.x环境下运行。这个程序的核心任务是对输入文本进行分词,统计每个单词出现的次数,并将结果输出。在这个过程中...
### Hadoop WordCount项目打包与部署详解 #### 一、Hadoop WordCount简介 Hadoop WordCount 是一个经典的示例程序,用于演示如何利用Hadoop MapReduce框架进行大规模数据处理。WordCount 的基本任务是计算文本文件...
**使用Hadoop实现WordCount实验报告** 实验报告的目的是详细记录使用Hadoop在Windows环境下实现WordCount应用的过程,包括环境配置、WordCount程序的实现以及实验结果分析。本实验旨在理解Hadoop分布式计算的基本...
### Hadoop运行WordCount实例详解 #### 一、Hadoop简介与WordCount程序的重要性 Hadoop 是一个由Apache基金会所开发的分布式系统基础架构。它能够处理非常庞大的数据集,并且能够在集群上运行,通过将大数据分割...
WordCount是Hadoop入门的经典示例,用于统计文本中单词出现的次数。本项目将详细介绍如何在Hadoop环境中成功运行WordCount程序,以及涉及到的相关知识点。 首先,`Hadoop`是一个基于Java的框架,设计用来处理和存储...
WordCount是Hadoop入门学习中的一个经典示例,用于统计文本中各个单词出现的次数。这个程序简单直观,很好地展示了MapReduce的工作原理。接下来,我们将深入探讨Hadoop的WordCount实例及其背后的原理。 首先,我们...
"hadoop实现wordcount"是一个经典的入门示例,用于演示Hadoop的MapReduce编程模型。在这个项目中,我们将探讨如何使用Hadoop进行大规模文本数据的情感分析,并统计单词出现的频率。 MapReduce是Hadoop的核心组件之...
hadoop wordCount 程序 hadoop wordCount 程序是一种基于 Hadoop платформы的数据处理程序,用于统计文本文件中的单词出现次数。下面是该程序的详细知识点: Hadoop 介绍 Hadoop 是一个由 Apache ...
hadoop-wordcount测试程序,jar包,单词统计的不二之选
【标题】Hadoop MapReduce 实现 WordCount MapReduce 是 Apache Hadoop 的核心组件之一,它为大数据处理提供了一个分布式计算框架。WordCount 是 MapReduce 框架中经典的入门示例,它统计文本文件中每个单词出现的...
### Ubuntu上运行Hadoop WordCount实例详解 #### 一、环境搭建与配置 在Ubuntu系统上部署并运行Hadoop WordCount实例,首先需要确保已经安装了Hadoop环境,并且版本为hadoop-0.20.2。此版本较旧,主要用于教学或...
Hadoop开发WordCount源码程序详细讲解,每一行都带注释说明。
hadoop入门例子wordcount
"Hadoop 1.2.1 版本下修改 WordCount 程序并编译" Hadoop 是一种基于分布式处理的大数据处理框架,其中 WordCount 程序是一个经典的示例程序,用于统计文本文件中的词频信息。在 Hadoop 1.2.1 版本下,我们可以修改...
【Hadoop Demo WordCount】是Hadoop初学者入门的经典示例,它展示了如何利用Hadoop分布式计算框架处理大规模文本数据。这个程序的核心在于统计文本中各个单词出现的次数,是理解MapReduce编程模型的一个基础应用。 ...
【标题】:在Hadoop平台上部署WordCount程序的详解 【描述】:本实验旨在让学生掌握如何在Hadoop平台上部署并运行WordCount程序,这是Hadoop入门的经典案例,旨在统计文本中的单词出现次数。通过实践,学生将了解...
本文将深入探讨Hadoop中的WordCount示例和文件上传过程,这些内容是理解Hadoop基本操作的关键。 首先,我们来看"WordCount"。WordCount是Hadoop入门的经典例子,它的主要任务是对文本文件中每个单词出现的次数进行...
在Windows平台上,利用Hadoop HDFS(分布式文件系统)处理大量数据已经成为常见的操作。本示例将详述如何使用Eclipse集成开发环境(IDE)的Hadoop插件,执行一个基于HDFS的中文分词任务,对《唐诗三百首》进行分析,...
Hadoop的WordCount程序是一个经典的分布式计算示例,它展示了如何在Hadoop框架下进行大规模数据处理。这个程序的主要目标是统计一组文本文件中每个单词出现的频率。在这个过程中,Hadoop利用其并行计算能力和任务...
文档详细的描述了Hadoop在Linux上的安装过程,并且附带了Wordcount程序示例