`

JAVA Socket超时浅析

阅读更多

 套接字或插座(socket)是一种软件形式的抽象,用于表达两台机器间一个连接的“终端”。针对一个特定的连接,每台机器上都有一个“套接字”,可以想象它们之间有一条虚拟的“线缆”。JAVA有两个基于数据流的套接字类:ServerSocket,服务器用它“侦听”进入的连接;Socket,客户端用它初始一次连接。侦听套接字只能接收新的连接请求,不能接收实际的数据包。

  套接字是基于TCP/IP实现的,它是用来提供一个访问TCP的服务接口,或者说套接字socket是TCP的应用编程接口API,通过应用层就可以访问TCP提供的服务。

在JAVA中,我们用ServerSocket、Socket类创建一个套接字连接,从套接字得到的结果是一个InputStream以及OutputStream对象,以便将连接作为一个IO流对象对待。通过IO流可以从流中读取数据或者写数据到流中,读写IO流会有异常IOException产生。

  套接字底层是基于TCP的,所以socket的超时和TCP超时是相同的。下面先讨论套接字读写缓冲区,接着讨论连接建立超时、读写超时以及JAVA套接字编程的嵌套异常捕获和一个超时例子程序的抓包示例。

1 socket读写缓冲区

  一旦创建了一个套接字实例,操作系统就会为其分配缓冲区以存放接收和要发送的数据。



  JAVA可以设置读写缓冲区的大小-setReceiveBufferSize(int size), setSendBufferSize(int size)。

  向输出流写数据并不意味着数据实际上已经被发送,它们只是被复制到了发送缓冲区队列SendQ,就是在Socket的OutputStream上调用flush()方法,也不能保证数据能够立即发送到网络。真正的数据发送是由操作系统的TCP协议栈模块从缓冲区中取数据发送到网络来完成的。

  当有数据从网络来到时,TCP协议栈模块接收数据并放入接收缓冲区队列RecvQ,输入流InputStream通过read方法从RecvQ中取出数据。

2 socket连接建立超时

  socket连接建立是基于TCP的连接建立过程。TCP的连接需要通过3次握手报文来完成,开始建立TCP连接时需要发送同步SYN报文,然后等待确认报文SYN+ACK,最后再发送确认报文ACK。TCP连接的关闭通过4次挥手来完成,主动关闭TCP连接的一方发送FIN报文,等待对方的确认报文;被动关闭的一方也发送FIN报文,然等待确认报文。

 

  正在等待TCP连接请求的一端有一个固定长度的连接队列,该队列中的连接已经被TCP接受(即三次握手已经完成),但还没有被应用层所接受。TCP接受一个连接是将其放入这个连接队列,而应用层接受连接是将其从该队列中移出。应用层可以通过设置backlog变量来指明该连接队列的最大长度,即已被TCP接受而等待应用层接受的最大连接数。

  当一个连接请求SYN到达时,TCP确定是否接受这个连接。如果队列中还有空间,TCP模块将对SYN进行确认并完成连接的建立。但应用层只有在三次握手中的第三个报文收到后才会知道这个新连接。如果队列没有空间,TCP将不理会收到的SYN。

  如果应用层不能及时接受已被TCP接受的连接,这些连接可能占满整个连接队列,新的连接请求可能不被响应而会超时。如果一个连接请求SYN发送后,一段时间后没有收到确认SYN+ACK,TCP会重传这个连接请求SYN两次,每次重传的时间间隔加倍,在规定的时间内仍没有收到SYN+ACK,TCP将放弃这个连接请求,连接建立就超时了。

  JAVA Socket连接建立超时和TCP是相同的,如果TCP建立连接时三次握手超时,那么导致Socket连接建立也就超时了。可以设置Socket连接建立的超时时间-

connect(SocketAddress endpoint, int timeout)

如果在timeout内,连接没有建立成功,在TimeoutException异常被抛出。如果timeout的值小于三次握手的时间,那么Socket连接永远也不会建立。

  不同的应用层有不同的连接建立过程,Socket的连接建立和TCP一样-仅仅需要三次握手就完成连接,但有些应用程序需要交互很多信息后才能成功建立连接,比如Telnet协议,在TCP三次握手完成后,需要进行选项协商之后,Telnet连接才建立完成。

3 socket读超时

  如果输入缓冲队列RecvQ中没有数据,read操作会一直阻塞而挂起线程,直到有新的数据到来或者有异常产生。调用setSoTimeout(int timeout)可以设置超时时间,如果到了超时时间仍没有数据,read会抛出一个SocketTimeoutException,程序需要捕获这个异常,但是当前的socket连接仍然是有效的。

  如果对方进程崩溃、对方机器突然重启、网络断开,本端的read会一直阻塞下去,这时设置超时时间是非常重要的,否则调用read的线程会一直挂起。

  TCP模块把接收到的数据放入RecvQ中,直到应用层调用输入流的read方法来读取。如果RecvQ队列被填满了,这时TCP会根据滑动窗口机制通知对方不要继续发送数据,本端停止接收从对端发送来的数据,直到接收者应用程序调用输入流的read方法后腾出了空间。

4 socket写超时

  socket的写超时是基于TCP的超时重传。超时重传是TCP保证数据可靠性传输的一个重要机制,其原理是在发送一个数据报文后就开启一个计时器,在一定时间内如果没有得到发送报文的确认ACK,那么就重新发送报文。如果重新发送多次之后,仍没有确认报文,就发送一个复位报文RST,然后关闭TCP连接。首次数据报文发送与复位报文传输之间的时间差大约为9分钟,也就是说如果9分钟内没有得到确认报文,就关闭连接。但是这个值是根据不同的TCP协议栈实现而不同。

  如果发送端调用write持续地写出数据,直到SendQ队列被填满。如果在SendQ队列已满时调用write方法,则write将被阻塞,直到SendQ有新的空闲空间为止,也就是说直到一些字节传输到了接收者套接字的RecvQ中。如果此时RecvQ队列也已经被填满,所有操作都将停止,直到接收端调用read方法将一些字节传输到应用程序。

  当Socket的write发送数据时,如果网线断开、对端进程崩溃或者对端机器重启动,TCP模块会重传数据,最后超时而关闭连接。下次如再调用write会导致一个异常而退出。

  Socket写超时是基于TCP协议栈的超时重传机制,一般不需要设置write的超时时间,也没有提供这种方法。

5 双重嵌套异常捕获

   如果ServerSocket、Socket构造失败,只需要仅仅捕获这个构造失败异常而不需要调用套接字的close方法来释放资源(必须保证构造失败后不会留下任何需要清除的资源),因为这时套接字内部资源没有被成功分配。如果构造成功,必须进入一个try finally语句块里调用close释放套接字。请参照下面例子程序。



  1. import java.net.*;  
  2. import java.io.*;  
  3. public class SocketClientTest  
  4. {  
  5.   public static final int PORT = 8088;  
  6.   public static void main( String[] args ) throws Exception  
  7.   {  
  8.     InetAddress addr = InetAddress.getByName( "127.0.0.1" );  
  9.     Socket socket = new Socket();  
  10.     try  
  11.     {  
  12.       socket.connect( new InetSocketAddress( addr, PORT ), 30000 );  
  13.       socket.setSendBufferSize(100);  
  14.         
  15.       BufferedWriter out = new BufferedWriter( new OutputStreamWriter( socket.getOutputStream() ) );  
  16.       int i = 0;  
  17.         
  18.       whiletrue )  
  19.       {  
  20.         System.out.println( "client sent --- hello *** " + i++ );  
  21.         out.write( "client sent --- hello *** " + i );  
  22.         out.flush();  
  23.           
  24.         Thread.sleep( 1000 );  
  25.       }  
  26.     }  
  27.     finally  
  28.     {  
  29.       socket.close();  
  30.     }  
  31.   }  
  32. }  

 




  1. import java.io.*;  
  2. import java.net.ServerSocket;  
  3. import java.net.Socket;  
  4. public class SocketServerTest  
  5. {  
  6.   public static final int PORT = 8088;  
  7.   public static final int BACKLOG = 2;  
  8.   public static void main( String[] args ) throws IOException  
  9.   {  
  10.     ServerSocket server = new ServerSocket( PORT, BACKLOG );  
  11.     System.out.println("started: " + server);  
  12.     try  
  13.     {  
  14.       Socket socket = server.accept();  
  15.       try  
  16.       {  
  17.         BufferedReader in = new BufferedReader( new InputStreamReader( socket.getInputStream() ) );  
  18.         String info = null;  
  19.           
  20.         while( ( info = in.readLine() ) != null )  
  21.         {  
  22.           System.out.println( info );  
  23.         }  
  24.       }  
  25.       finally  
  26.       {  
  27.         socket.close();  
  28.       }  
  29.     }  
  30.     finally  
  31.     {  
  32.       server.close();  
  33.     }  
  34.   }  
  35. }  



  执行上面的程序,在程序运行一会儿之后,断开client和server之间的网络连接,在机器上输出如下:


Server上的输出:

Echoing:client sent -----hello0


Echoing:client sent -----hello1

Echoing:client sent -----hello2

Echoing:client sent -----hello3

Echoing:client sent -----hello4

Echoing:client sent -----hello5

Echoing:client sent -----hello6

 

---->> 断开了网络连接之后没有数据输出


Client上的输出:

socket default timeout = 0

socket = Socket[addr=/10.15.9.99,port=8088,localport=4691]

begin to read

client sent --- hello *** 0

client sent --- hello *** 1

client sent --- hello *** 2

client sent --- hello *** 3

client sent --- hello *** 4

client sent --- hello *** 5

client sent --- hello *** 6

client sent --- hello *** 7

client sent --- hello *** 8  

client sent --- hello *** 9

client sent --- hello *** 10


 ---->> 断开网络连接后客户端进程挂起


java.net.SocketException : Connection reset by peer: socket write error

    at java.net.SocketOutputStream.socketWrite0( Native Method )

    at java.net.SocketOutputStream.socketWrite( SocketOutputStream.java:92 )

    at java.net.SocketOutputStream.write( SocketOutputStream.java:136 )

    at sun.nio.cs.StreamEncoder.writeBytes( StreamEncoder.java:202 )

    at sun.nio.cs.StreamEncoder.implFlushBuffer( StreamEncoder.java:272 )

    at sun.nio.cs.StreamEncoder.implFlush( StreamEncoder.java:276 )

    at sun.nio.cs.StreamEncoder.flush( StreamEncoder.java:122 )

    at java.io.OutputStreamWriter.flush( OutputStreamWriter.java:212 )

    at java.io.BufferedWriter.flush( BufferedWriter.java:236 )

    at com.xtera.view.SocketClientTest.main( SocketClientTest.java:99 )


  当hello6被发送到server端后,网络连接被断开,这时server端不能接收任何数据而挂起。client端仍然继续发送数据,实际上hello7、hello8、hello9、hello10都被复制到SendQ队列中,write方法立即返回。当client的SendQ队列被填满之后,write方法就被阻塞。TCP模块在发送报文hello7之后,没有收到确认而超时重传,再重传几次之后关闭了TCP连接,同时导致被阻塞的write方法异常返回。

  通过抓包工具,我们可以看到超时重传的报文。








 

分享到:
评论

相关推荐

    JAVA Socket超时浅析 转.doc

    Java Socket超时机制详解 Java Socket是用于实现网络通信的基础组件,它基于TCP/IP协议,提供了客户端和服务端之间数据传输的通道。在Java中,ServerSocket用于监听客户端的连接请求,而Socket则用于建立和管理实际...

    JAVA Socket超时浅析.docx

    Java中的Socket超时机制是网络编程中非常关键的一部分,它涉及到网络通信的可靠性和效率。Socket是基于TCP/IP协议实现的,提供了应用层与传输层之间的接口,让我们可以通过流(InputStream和OutputStream)来读写...

    JAVA Socket超时浅析.pdf

    Linux环境下基于TCP的Socket编程浅析.pdf

    《Linux环境下基于TCP的Socket编程浅析》 在现代计算机科学中,Socket编程是构建网络应用程序的基础,尤其在Linux操作系统中,它的重要性更是不言而喻。Socket提供了一种标准接口,使得进程间通信(IPC)以及网络...

    呼伦贝尔市-扎兰屯市-街道行政区划_150783_Shp数据-wgs84坐标系.rar

    呼伦贝尔市-扎兰屯市-街道行政区划_150783_Shp数据-wgs84坐标系.rar

    text13届真题二.zip

    text13届真题二.zip

    锡林郭勒盟-东乌珠穆沁旗-街道行政区划_152525_Shp数据-wgs84坐标系.rar

    街道级行政区划shp矢量数据,wgs84坐标系,下载直接使用

    WPF实现工业级动态流体管道动画:C#代码解析与性能优化

    内容概要:本文详细介绍了如何使用WPF(Windows Presentation Foundation)实现逼真的工业组态软件中的流体管道动画。主要内容涵盖管道绘制、流体动画效果、动态速度控制以及性能优化等方面。首先,通过C#代码展示了如何使用几何图形和颜色动画创建动态变化的管道。接着,引入粒子系统和模糊效果来增强流体的真实感。为了实现流体速度的动态调整,文中提供了流速控制器的实现方法。此外,还讨论了基于帧刷新的性能优化技术和双重缓冲机制的应用。最后,文章提到了一些高级技巧,如Perlin噪声生成流速波动、粒子沿曲线运动、动态纹理等。 适合人群:对WPF开发感兴趣的中级及以上水平的开发者,尤其是那些希望深入了解WPF图形和动画特性的程序员。 使用场景及目标:适用于需要开发工业组态软件或其他涉及流体模拟应用的项目。主要目标是帮助开发者掌握如何使用WPF创建高效且视觉效果出色的流体动画。 其他说明:文中提供的代码片段可以直接应用于实际项目中,同时也鼓励读者进一步探索更多复杂的流体模拟技术。

    HCIA-Datacom高阶:vlan、vlanif、单臂路由、静态路由、ospf综合实验

    HCIA-Datacom高阶:vlan、vlanif、单臂路由、静态路由、ospf综合实验

    毕业论文 基于fpga的rs 232串口通讯逻辑设计说明书.doc

    毕业论文 基于fpga的rs 232串口通讯逻辑设计说明书.doc

    呼伦贝尔市-阿荣旗-街道行政区划_150721_Shp数据-wgs84坐标系.rar

    呼伦贝尔市-阿荣旗-街道行政区划_150721_Shp数据-wgs84坐标系.rar

    微电网能源管理中的随机博弈与Python实现:基于双网络架构的动态定价与负荷调度

    内容概要:本文详细介绍了微电网中能源管理的随机博弈模型及其Python实现。首先,通过构建MicrogridEnv类来模拟多方博弈环境,每个智能体可以进行买卖操作并调整负荷。接着,引入了ET网络用于处理价格博弈,ADL网络用于负荷预测。这两个网络通过策略梯度协同优化,共同实现动态定价和负载调度。文中展示了具体的训练过程和实验结果,证明了该模型在波动环境下能够显著提高系统收益稳定性。此外,还讨论了动态定价策略的具体实现,包括供需平衡系数计算和价格波动修正项的设计。最后,通过多智能体交互代码展示了真实的博弈过程,并进行了对比实验,验证了模型的有效性和优越性。 适合人群:对微电网能源管理和强化学习感兴趣的科研人员、工程师和技术爱好者。 使用场景及目标:适用于研究和开发微电网能源管理系统,旨在通过动态定价和负荷调度优化能源利用效率,提高系统收益和稳定性。 其他说明:本文不仅提供了详细的代码实现,还深入探讨了模型背后的理论依据和设计思路,帮助读者全面理解微电网能源管理中的随机博弈机制。

    皮秒分辨率的FPGA TDC技术研究.pdf

    皮秒分辨率的FPGA TDC技术研究.pdf

    【Java Web开发】Tomcat服务器配置与优化:面试专题及性能调优详解Tomcat服务器的

    内容概要:本文档《Tomcat面试专题及答案.pdf》详细介绍了Tomcat服务器的相关知识点,涵盖配置、优化、部署、内存与垃圾回收调优、Session处理、JMS远程监控、专业分析工具、Session数目查看、内存使用情况监视、类加载与对象回收情况打印以及Tomcat的工作模式。文档首先讲解了Tomcat的默认端口及修改方法,随后深入探讨了四种Connector运行模式(bio、nio、aio、apr)及其参数配置。接着介绍了三种Web应用部署方式,并阐述了Tomcat容器创建Servlet实例的原理。在优化部分,重点讨论了连接配置、内存调优、垃圾回收策略的选择,还涉及了共享Session的多种处理方案。最后,文档概述了一个HTTP请求在Tomcat内部的完整处理流程。 适合人群:有一定Java开发经验,特别是Web开发背景的研发人员和技术专家。 使用场景及目标:①准备技术面试,尤其是针对Tomcat相关问题;②优化现有基于Tomcat的应用系统性能;③深入了解Tomcat架构及其工作原理,以更好地进行应用部署和维护。 其他说明:文档内容详实,既适合初学者入门学习,也适合有一定经验的开发者深入研究。建议读者在实际工作中结合自身环境进行针对性配置与优化实践。

    软考中级-软件设计师知识点整理(一篇就过(3).html

    软考中级-软件设计师知识点整理(一篇就过(3).html

    MATLAB数据预测:融合多种机器学习与统计模型的时间序列预测方法

    内容概要:本文详细介绍了使用MATLAB进行数据预测的各种方法和技术细节,涵盖了现代的人工智能算法如LSTM、BP神经网络、RBF和Elman等,以及传统的统计方法如ARIMA和GM灰色预测。文中不仅提供了具体的代码实例,还分享了许多实用的经验和注意事项,强调了数据预处理的重要性。作者通过多个实际案例展示了不同算法在不同数据集上的表现差异,指出了选择合适算法的关键在于理解数据本身的特性。 适合人群:对时间序列预测感兴趣的科研人员、工程师以及有一定编程基础并希望深入理解MATLAB预测工具的学生。 使用场景及目标:适用于需要进行时间序列数据分析和预测的研究项目,旨在帮助读者掌握如何根据具体应用场景选择最合适的预测模型,并能够独立完成从数据准备到模型评估的全过程。 其他说明:文章特别提醒读者,在面对复杂多变的实际问题时,除了关注算法本身外,更要重视数据的质量和预处理步骤。此外,作者还提供了一些关于模型调优的小贴士,如调整LSTM层数、设置ARIMA参数等。

    沧州市-吴桥县--街道行政区划_130928_Shp-wgs84坐标系.rar

    街道级行政区划shp数据,wgs84坐标系,直接使用。

    流水线贴膜机:基于PLC与触摸屏的工业自动化控制及运动控制初学者指南

    内容概要:本文详细介绍了流水线贴膜机的控制系统设计,涵盖PLC与触摸屏的协同控制。具体包括上下气缸、夹紧气缸、输送带电机、贴膜伺服和旋转电机的控制逻辑。PLC程序实现了各部件的协调运作,而触摸屏提供了友好操作界面。文中不仅展示了完整的程序结构和关键代码片段,还分享了许多实际调试经验和常见问题解决方案。 适合人群:对工业自动化控制感兴趣的初学者,尤其是想要深入了解PLC编程和运动控制的技术人员。 使用场景及目标:适用于学习PLC编程、触摸屏设计、气缸和电机控制、伺服定位等基础知识。通过该项目,学习者可以掌握工业自动化系统的完整开发流程,理解各组件间的协作机制,并积累实际调试经验。 其他说明:项目支持博图V15.1及以上版本,强调模块化设计和良好的代码规范,有助于提高程序的可维护性和扩展性。文中提供的实例和技巧能够帮助初学者更好地理解和应用工业自动化控制技术。

    工业级激光雷达SLAM三维建图:基于点云算法与高精度云台系统的创新应用

    内容概要:本文详细介绍了自主研发的工业级三维扫描系统,该系统利用二维激光雷达与高精度单轴云台相结合,实现了高效、精准的三维点云建模。文章重点阐述了云台控制、数据同步、点云重建、滤波算法以及多雷达适配等方面的技术细节。云台控制系统采用裸机驱动程序,确保角度定位误差小于0.03度;数据同步方面,通过时间戳双缓冲机制和优化的时间对齐算法,提高了数据处理速度;点云重建部分,提出了改进的坐标转换矩阵,显著提升了重建精度;针对工业环境的特点,开发了多种滤波算法,有效去除噪点;此外,系统支持多种雷达的动态配置,增强了灵活性和适应性。 适合人群:从事激光雷达SLAM研究、三维建图、工业自动化领域的研究人员和技术人员。 使用场景及目标:适用于矿山、冶金、建筑等复杂工业环境中的三维数据获取和建模任务,旨在提高测绘效率和精度,降低设备成本,增强系统的鲁棒性和可靠性。 其他说明:文中提供了大量的代码片段和实际应用场景案例,强调了技术创新和实用性的结合,展现了从硬件设计到软件算法的全面解决方案。

    海洋气候与海洋生物数据集

    观测日期 位置 海洋位置名称(例如,马尔代夫大堡礁) 纬度 观测点纬度 经度 观测点经度 海温(°C) 海面温度(摄氏度) pH值 海水的酸度(较低意味着酸性更强,这是酸化的标志) 漂白严重程度 分类变量:无、低、中、高 观察到的物种 采样期间观察到的海洋物种数量 海洋热浪 布尔标志(真/假),指示SST是否>30°C 随着气候变化的加速,世界海洋正在经历重大变革。该数据集汇编了海面温度(SST)、pH值、珊瑚白化严重程度和生态关键海洋区物种观测的合成但真实的测量结果。它涵盖了2015年至2023年,模拟了海洋环境如何应对全球变暖、酸化和热浪。 该数据集的目标是支持机器学习、气候分析和生态建模

Global site tag (gtag.js) - Google Analytics