来源:http://www.cnblogs.com/kevinyang/archive/2009/02/01/1381803.html
发表者:Google(谷歌)研究员 吴军
在 日常生活中,包括在设计计算机软件时,我们经常要判断一个元素是否在一个集合中。比如在字处理软件中,需要检查一个英语单词是否拼写正确(也就是要判断它 是否在已知的字典中);在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上;在网络爬虫里,一个网址是否被访问过等等。最直接的方法就是将集合中全部的元素存在计算机中,遇到一个新 元素时,将它和集合中的元素直接比较即可。一般来讲,计算机中的集合是用哈希表(hash
table)来存储的。它的好处是快速准确,缺点是费存储空间。当集合比较小时,这个问题不显著,但是当集合巨大时,哈希表存储效率低的问题就显现出来 了。比如说,一个象 Yahoo,Hotmail 和 Gmai 那样的公众电子邮件(email)提供商,总是需要过滤来自发送垃圾邮件的人(spamer)的垃圾邮件。一个办法就是记录下那些发垃圾邮件的 email 地址。由于那些发送者不停地在注册新的地址,全世界少说也有几十亿个发垃圾邮件的地址,将他们都存起来则需要大量的网络服务器。如果用哈希表,每存储一亿 个 email
地址, 就需要 1.6GB 的内存(用哈希表实现的具体办法是将每一个 email 地址对应成一个八字节的信息指纹
googlechinablog.com/2006/08/blog-post.html, 然后将这些信息指纹存入哈希表,由于哈希表的存储效率一般只有 50%,因此一个 email 地址需要占用十六个字节。一亿个地址大约要 1.6GB, 即十六亿字节的内存)。因此存贮几十亿个邮件地址可能需要上百 GB 的内存。除非是超级计算机,一般服务器是无法存储的。
今天,我们介绍一种称作布隆过滤器的数学工具,它只需要哈希表 1/8 到 1/4 的大小就能解决同样的问题。
布隆过滤器是由巴顿.布隆于一九七零年提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。我们通过上面的例子来说明起工作原理。
假 定我们存储一亿个电子邮件地址,我们先建立一个十六亿二进制(比特),即两亿字节的向量,然后将这十六亿个二进制全部设置为零。对于每一个电子邮件地址 X,我们用八个不同的随机数产生器(F1,F2, ...,F8) 产生八个信息指纹(f1, f2, ..., f8)。再用一个随机数产生器 G 把这八个信息指纹映射到 1 到十六亿中的八个自然数 g1, g2, ...,g8。现在我们把这八个位置的二进制全部设置为一。当我们对这一亿个
email 地址都进行这样的处理后。一个针对这些 email 地址的布隆过滤器就建成了。(见下图)
现 在,让我们看看如何用布隆过滤器来检测一个可疑的电子邮件地址 Y 是否在黑名单中。我们用相同的八个随机数产生器(F1, F2, ..., F8)对这个地址产生八个信息指纹 s1,s2,...,s8,然后将这八个指纹对应到布隆过滤器的八个二进制位,分别是 t1,t2,...,t8。如果 Y 在黑名单中,显然,t1,t2,..,t8 对应的八个二进制一定是一。这样在遇到任何在黑名单中的电子邮件地址,我们都能准确地发现。
布隆过滤器决不会漏掉任何一个在黑名单中的可 疑地址。但是,它有一条不足之处。也就是它有极小的可能将一个不在黑名单中的电子邮件地址判定为在黑名单中,因为有可能某个好的邮件地址正巧对应个八个都 被设置成一的二进制位。好在这种可能性很小。我们把它称为误识概率。在上面的例子中,误识概率在万分之一以下。
布隆过滤器的好处在于快速,省空间。但是有一定的误识别率。常见的补救办法是在建立一个小的白名单,存储那些可能别误判的邮件地址。
分享到:
相关推荐
布隆过滤器是一种数据结构,主要用于判断一个元素是否可能在一个集合中存在。它可以在插入和查询数据时快速地判断一个元素是否可能在这个集合中,比如在缓存中查询一个元素是否存在。 它的原理是使用多个哈希函数对...
布隆过滤器是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。它是由 Burton Howard Bloom 在1970年提出的,主要应用于大数据存储和检索,尤其在数据库、缓存系统和网络搜索等领域有广泛...
布隆过滤器(Bloom Filter)是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。在Java开发中,特别是在处理大数据、内存限制或需要快速查询是否存在某个元素的场景下,布隆过滤器是一个...
布隆过滤器(Bloom Filter)是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。由布隆在1970年提出,它不像传统的数据结构如哈希表那样保证不误判,而是允许有一定的错误率。这种特性使得...
布隆过滤器(Bloom Filter)是一种空间效率极高的概率型数据结构,用于判断一个元素是否在一个集合中。它可能会误判,但不会漏判,即如果它说一个元素在集合中,那可能是错误的,但如果它说一个元素不在集合中,那么...
例如,`bf_create(size_t capacity, uint8_t num_hashes)`用于创建一个布隆过滤器,`bf_insert(bloom_filter* filter, const void* item)`用于插入元素,`bf_query(bloom_filter* filter, const void* item)`用于...
Redis集成布隆过滤器需要使用Redis 4.0以上版本,或者使用Redis 6.x版本,使用官方提供的插件机制或编译安装RedisBloom模块。使用布隆过滤器可以解决大量数据去重问题,提高系统性能和效率。 布隆过滤器的优点是: ...
布隆过滤器(Bloom Filter)是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。在大数据处理、缓存系统、分布式存储等领域有着广泛的应用。这个压缩包文件“bloom filter布隆过滤器学习...
- `Intersection(other *BloomFilter)`: 计算两个布隆过滤器的交集,创建一个新的布隆过滤器,只保留同时存在于两个过滤器中的元素的位。 4. **优化策略**: - **位数组大小**:位数组的大小直接影响误判率,需要...
布隆过滤器是一种高效的空间节省的数据结构,用于判断一个元素是否可能在一个集合中,但可能会产生一定的误判率。它由一个很长的二进制向量和多个独立的哈希函数组成。布隆过滤器的基本原理是,当一个元素被添加到...
`bloomfilter.js`可能是JavaScript版本的布隆过滤器实现,而"Go-布隆过滤器的一个Go实现参考bloomfilter.js"则表明该Go版本的实现是借鉴了JavaScript版本的设计思路或代码结构。 Go实现布隆过滤器的关键组件包括: ...
C++实现的布隆过滤器,其中使用到的bitset也是自己简单实现的一个BitContainer。可以处理千万条到亿条记录的存在性判断。做成dll可以在很多场合使用,如自己写爬虫,要判断一个url是否已经访问过,判断一个单词是否...
布隆过滤器,大家学过数据结构的应该都清楚,一般的字典树要实现嵌入和查找都内存的消耗非常大,布隆过滤器有BloomFilter,string, BKDRHash, APHash, DJBHash> bf五个参数你要查找的元素个数,查找元素类型,三个...
布隆过滤器(Bloom Filter)是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。在C++中实现布隆过滤器,可以有效地处理大量数据,尤其是在内存有限的情况下。这个压缩包文件"Bloom_filter...
在Python中,有多个库实现了布隆过滤器,其中一个就是我们这里提到的"python-bloomfilter-master"。 这个Python库提供了对布隆过滤器的简单接口,使得开发者可以方便地在项目中应用布隆过滤器。安装过程非常直观,...
布隆过滤器在网页去重中的应用 , 海量数据处理中的一个绝好应用
**布隆过滤器(Bloom Filter)**是一种空间效率极高的概率型数据结构,用于测试一个元素是否在一个集合中。由Burton Howard Bloom在1970年提出,主要用于节省存储空间,尤其在大数据场景下,它能有效地解决大规模...
在PHP和Redis中实现布隆过滤器,可以利用PHP的扩展库,如BloomFilter库,或者直接在Redis中使用BF.ADD、BF.MEMBERS和BF.EXISTS等命令操作布隆过滤器。Redis的布隆过滤器模块提供了方便的操作接口,能够在分布式环境...
布隆过滤器是一种概率型数据结构,用于判断一个元素是否可能在一个集合中。它是由Burton Howard Bloom在1970年提出的,主要用于解决大数据集的存储和查询问题,尤其在空间效率上有着显著优势。在数据库、搜索引擎、...
Redis布隆过滤器插件是Redis数据库中一个非常实用的扩展功能,主要用于高效地判断一个元素是否可能存在于集合中。由于其独特的数据结构和算法,它在存储空间和查询效率之间取得了良好的平衡,尤其适用于大数据场景下...