`
javatome
  • 浏览: 858730 次
  • 性别: Icon_minigender_1
  • 来自: 北京
文章分类
社区版块
存档分类
最新评论

《Linux那些事儿之我是USB》我是U盘(21)传说中的URB

 
阅读更多

有人问,怎么写一个驱动写这么久啊?

的确,一路走来,大家都不容易,但既然已经走到今天,我们能做的也只有是坚持下去。

usb_stor_acquire_resources(),从名字上来看是获取资源。什么是资源?之前不是申请了一大堆内存了吗?写个USB设备驱动程序怎么这么麻烦啊?不是专门为USB Mass Storage设备准备了一个struct us_data这么一个结构体了吗?不是说故事已经到高潮了吗?

如果你以为看到这里你已经对USB设备驱动程序有了足够的认识,认为接下来的代码已经没有必要再分析了,那么,我只想说,上帝创造世界的计划中,未必包括使你会写USB设备驱动程序。

的确,别看usb_stor_acquire_resources的代码不多,每一行都有每一行的故事。本节我们只讲其中的一行代码,没错,就是一行代码,因为我们需要隆重推出一个名词,一个响当当的名字,它就是传说中的“urb”,全称USB RequestBlock。USB设备需要通信,要传递数据,就需要使用urb,确切地说,应该是USB设备驱动程序使用urb。实际上,作为USB设备驱动,它本身并不能直接操纵数据的传输,在USB这个大观园里,外接设备永远都是配角,真正的核心只是USB Core,而真正负责调度的是USB主机控制。这个通常看不见的USB主机控制器芯片,俨然是USB大观园中的大管家。设备驱动要发送信息,所需要做的是建立一个urb数据结构,并把这个数据结构交给核心层,而核心层会为所有设备统一完成调度,而设备在提交了urb之后需要做的,只是等待。别急,我们慢慢来。

784行,一条赋值语句,等号左边us->current_urb,等号右边usb_alloc_urb()函数被调用。如果说struct us_data是usb mass storage中的主角,那么struct urb将毫无争议地成为整个USB子系统中的主角。Linux中所有的USB设备驱动,都必然也必须要使用urb。那么urb究竟长成什么样呢?在include/linux/usb.h中能找到它:

1126 struct urb

1127 {

1128 /* private: usb core and hostcontroller only fields in the urb */

1129 struct kref kref;/* reference count of the URB */

1130 spinlock_t lock;/* lock for the URB */

1131 void *hcpriv;/* private data for host controller */

1132 atomic_tuse_count;/* concurrent submissions counter */

1133 u8 reject;/* submissions will fail */

1134

1135 /* public: documented fields inthe urb that can be used by drivers*/

1136 struct list_head urb_list; /* list headfor use by the urb's

1137* current owner */

1138 struct usb_device *dev; /* (in)pointer to associated device */

1139 unsignedint pipe;/* (in) pipe information */

1140 intstatus;/* (return) non-ISO status */

1141 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK |...*/

1142 void*transfer_buffer; /* (in)associated data buffer */

1143 dma_addr_ttransfer_dma; /*(in) dma addr for transfer_buffer */

1144 int transfer_buffer_length; /* (in) data bufferlength */

1145 int actual_length;/* (return) actual transfer length */

1146 unsigned char *setup_packet; /* (in) setup packet (control only) */

1147 dma_addr_tsetup_dma; /* (in) dma addr for setup_packet*/

1148 intstart_frame;/* (modify) start frame (ISO) */

1149 intnumber_of_packets; /* (in)number of ISO packets */

1150 intinterval;/* (modify) transfer interval

1151* (INT/ISO) */

1152 int error_count;/* (return) number of ISO errors */

1153 void*context;/* (in) context for completion */

1154 usb_complete_tcomplete; /* (in) completionroutine */

1155 struct usb_iso_packet_descriptoriso_frame_desc[0];

1156/* (in) ISO ONLY */

1157 };

我们常常抱怨,Linux内核源代码中注释太少了,以至于我们常常看不懂那些代码究竟是什么含义。但urb让开发人员做足了文章,结构体struct urb的定义不过30行,而说明文字却用了足足160余行。可见urb的地位。当然我们这里贴出来主要还是为了保持原汁原味,另一方面这个注释也说得很清楚,对于每一个成员都解释了,而我们接下来将必然要用到urb的许多个成员。

此刻,我们暂时不去理会这个结构体每一个元素的作用,只需要知道,一个urb包含了执行USB传输所需要的所有信息。而作为驱动程序,要通信就必须创建这么一个数据结构,并且赋值,显然不同类型的传输,需要对urb赋不同的值,然后将她提交给底层,完了底层的USB Core会找到相应的USB主机控制器,从而具体实现数据的传输。传输完了之后,USB主机控制器会通知设备驱动程序。

总之我们知道,784行就是调用usb_alloc_urb()申请了一个struct urb结构体。关于usb_alloc_urb()这个函数,我们不打算讲,它是USB Core所提供的一个函数,来自drivers/usb/core/urb.c,USB开发人员的确是给足了urb的面子,专门把和这个数据结构相关的代码整理在这么一个文件中了。我们可以在include/linux/usb.h中找到这个函数的声明:

1266 extern struct urb *usb_alloc_urb(intiso_packets, gfp_t mem_flags);

这个函数的作用很明显,就是为一个urb结构体申请内存。它有两个参数,其中第一个iso_packets用来在等时传输的方式下指定你需要传输多少个包,对于非等时模式来说,这个参数直接使用0。另一个参数mem_flags就是一个flag,表示申请内存的方式,这个flag将最终传递给kmalloc函数,我们这里传递的是GFP_KERNEL,这个flag是内存申请中最常用的,我们之前也用过,在为us申请内存时。usb_alloc_urb最终将返回一个urb指针,而us的成员current_urb也是一个struct urb的指针,所以就赋给它了。不过需要记住,usb_alloc_urb除了申请内存以外,还对结构体做了初始化,结构体urb被初始化为0,虽然这里我们没有把这个函数的代码“贴”出来,但你也千万不要以为写代码的人跟我似的,申请变量还能忘了初始化。同时,struct urb中还有一个引用计数,以及一个自旋锁,这些也同样被初始化了。

所以,接下来我们就将要和us->current_urb打交道了。如果你对urb究竟怎么用还有些困惑的话,可以查看主机控制器驱动的代码。如果你不想看,那么我可以用一种你最能接受的方式告诉你,USB是一种总线,是总线它就要通信。我们现实生活中真正要使用的是设备,但是光有设备还不足以实现USB通信,于是世界上有了USB主机控制器,它来负责统一调度。这就好比城市的交警,这个城市里真正需要的本来是车辆和行人,而光有车辆和行人,没有交警,那么这个城市里的车辆和行人必将乱套。于是诞生了交警这个行业,交警站在路口统一来管理调度混乱的交通。假如车辆和行人可以完全自觉遵守某种规矩而来来往往于这个城市的每一个角落及每一个路口,那么交警就没有必要存在了。同样,假如设备能够完全自觉地传递信息,每一个数据包都能到达它应该去的地方,那么我们根本就不需要有主机控制器。然而,事实上总会有不遵守交通规则的人。同样,在USB的世界中,设备也总是那么不守规矩,我们必须要设计一个东西出来管理来控制所有的USB设备的通信,这样,主机控制器就横空出世了。

那么设备和主机控制器的分工又是如何呢?硬件实现上我们就不说了,说点儿具体的,在Linux中,设备驱动程序只要为每一次请求准备一个urb结构体变量,把它填充好(就是说赋上该赋的值),然后它调用USB Core提供的函数,把这个urb传递给主机控制器,主机控制器就会把各个设备驱动程序所提交的urb统一规划,去执行每一个操作。而这期间,USB设备驱动程序通常会进入睡眠,而一旦主机控制器把urb要做的事情给做完了,它会调用一个函数去唤醒USB设备驱动程序,然后USB设备驱动程序就可以继续往下走了。

这又好比我们学校里的师生关系。考试时,我们只管把试卷填好,然后我们交给老师,然后老师拿去批改试卷,这期间我们除了等待别无选择,等待老师改完了试卷,告诉了我们分数,我们又继续我们的生活。同样,USB设备驱动程序也是如此,如果urb提交给USB主机了,但是最终却没有成功执行,那么也许该USB设备驱动程序的生命也就提前结束。不过这都是后话,现在只要有一个感性认识即可,稍后看到了就能更深刻的体会了,这种岗位分工的方式给我们编写设备驱动程序带来了巨大的方便。

继续usb_stor_acquire_resources函数。

785行到788行,就是刚才urb申请了之后判断是否申请成功了,如果指针为NULL那么就是失败了,直接返回-ENOMEM。

792行,us->unusual_dev->initFunction是什么?在分析unusual_devs.h文件时曾经专门举过例子的,说有些设备需要一些初始化函数,它就定义在unusual_devs.h文件中,而我们通过UNUSUAL_DEV的定义已经把这些初始化函数赋给了us->unusual_dev的initFunction指针了。所以这时候,在传输开始之前,我们判断是不是有这样一个函数,即这个函数指针是否为空,如果不为空,很好办,执行这个函数就行了。比如当时我们举例子时说的那两个设备就有初始化函数,那么就让它执行好了。当然,一般的设备肯定不需要这么一个函数。至于传递给这个函数的参数,在struct us_unusual_dev结构体定义时,就把这个函数需要什么样的参数定义好了,需要的就是一个struct us_data *,那么很自然,传递的就是us。

至此,我们终于走到了usb_stor_acquire_resources()中第799行,即将见到这个千呼万唤始出来的内核精灵。
分享到:
评论

相关推荐

    Linux那些事儿之我是USB

    ### Linux那些事儿之我是USB —— USB技术在Linux下的实现与探索 #### 引言 在探讨《Linux那些事儿之我是USB》这篇文章之前,我们先简单回顾一下文章的背景及主要内容。该文由一位自称对Linux并无太多好感的作者...

    Linux那些事儿系列丛书__合集

    ### Linux那些事儿之我是U盘 - **USB技术简介**:作者以幽默的方式回顾了2005年的一次毕业答辩经历,当时被要求用一句话介绍USB技术。这段经历反映出作者对于技术细节的重视以及对USB技术复杂性的理解。 - **关键词...

    MATLAB实现基于LSTM-AdaBoost长短期记忆网络结合AdaBoost时间序列预测(含模型描述及示例代码)

    内容概要:本文档详细介绍了基于 MATLAB 实现的 LSTM-AdaBoost 时间序列预测模型,涵盖项目背景、目标、挑战、特点、应用领域以及模型架构和代码示例。随着大数据和AI的发展,时间序列预测变得至关重要。传统方法如 ARIMA 在复杂非线性序列中表现欠佳,因此引入了 LSTM 来捕捉长期依赖性。但 LSTM 存在易陷局部最优、对噪声鲁棒性差的问题,故加入 AdaBoost 提高模型准确性和鲁棒性。两者结合能更好应对非线性和长期依赖的数据,提供更稳定的预测。项目还展示了如何在 MATLAB 中具体实现模型的各个环节。 适用人群:对时间序列预测感兴趣的开发者、研究人员及学生,特别是有一定 MATLAB 编程经验和熟悉深度学习或机器学习基础知识的人群。 使用场景及目标:①适用于金融市场价格预测、气象预报、工业生产故障检测等多种需要时间序列分析的场合;②帮助使用者理解并掌握将LSTM与AdaBoost结合的实现细节及其在提高预测精度和抗噪方面的优势。 其他说明:尽管该模型有诸多优点,但仍存在训练时间长、计算成本高等挑战。文中提及通过优化数据预处理、调整超参数等方式改进性能。同时给出了完整的MATLAB代码实现,便于学习与复现。

    palkert_3ck_01_0918.pdf

    palkert_3ck_01_0918

    pepeljugoski_01_1106.pdf

    pepeljugoski_01_1106

    tatah_01_1107.pdf

    tatah_01_1107

    [AB PLC例程源码][MMS_046393]Motor Speed Reference.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    基于51的步进电机控制系统20250302

    题目:基于单片机的步进电机控制系统 模块: 主控:AT89C52RC 步进电机(ULN2003驱动) 按键(3个) 蓝牙(虚拟终端模拟) 功能: 1、可以通过蓝牙远程控制步进电机转动 2、可以通过按键实现手动与自动控制模式切换。 3、自动模式下,步进电机正转一圈,反转一圈,循环 4、手动模式下可以通过按键控制步进电机转动(顺时针和逆时针)

    [AB PLC例程源码][MMS_041234]Logix Fault Handler.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    [AB PLC例程源码][MMS_042348]Using an Ultra3000 as an Indexer on DeviceNet with a CompactLogix.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    智慧校园平台建设全流程详解:从需求到持续优化

    内容概要:本文详细介绍了建设智慧校园平台所需的六个关键步骤。首先通过需求分析深入了解并确定校方和使用者的具体需求;其次是规划设计阶段,依据所得需求制定全面的建设方案。再者是对现有系统的整合——系统集成,确保新旧平台之间的互操作性和数据一致性。培训支持帮助全校教职工和学生快速熟悉新平台,提高效率。实施试点确保系统逐步稳定部署。最后,强调持续改进的重要性,以适应技术和环境变化。通过这一系列有序的工作,可以使智慧校园建设更为科学高效,减少失败风险。 适用人群:教育领域的决策者和技术人员,包括负责信息化建设和运维的团队成员。 使用场景及目标:用于指导高校和其他各级各类学校规划和发展自身的数字校园生态链;目的是建立更加便捷高效的现代化管理模式和服务机制。 其他说明:智慧校园不仅仅是简单的IT设施升级或软件安装,它涉及到全校范围内的流程再造和创新改革。

    AI淘金实战手册:100+高收益变现案例解析

    该文档系统梳理了人工智能技术在商业场景中的落地路径,聚焦内容生产、电商运营、智能客服、数据分析等12个高潜力领域,提炼出100个可操作性变现模型。内容涵盖AI工具开发、API服务收费、垂直场景解决方案、数据增值服务等多元商业模式,每个思路均配备应用场景拆解、技术实现路径及收益测算框架。重点呈现低代码工具应用、现有平台流量复用、细分领域自动化改造三类轻量化启动方案,为创业者提供从技术选型到盈利闭环的全流程参考。

    palkert_3ck_02_0719.pdf

    palkert_3ck_02_0719

    2006-2023年 地级市-克鲁格曼专业化指数.zip

    克鲁格曼专业化指数,最初是由Krugman于1991年提出,用于反映地区间产业结构的差异,也被用来衡量两个地区间的专业化水平,因而又称地区间专业化指数。该指数的计算公式及其含义可以因应用背景和具体需求的不同而有所调整,但核心都是衡量地区间的产业结构差异或专业化程度。 指标 年份、城市、第一产业人数(first_industry1)、第二产业人数(second_industry1)、第三产业人数(third_industry1)、专业化指数(ksi)。

    [AB PLC例程源码][MMS_046305]R2FX.zip

    AB PLC例程代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    精品推荐-通信技术LTE干货资料合集(19份).zip

    精品推荐,通信技术LTE干货资料合集,19份。 LTE PCI网络规划工具.xlsx LTE-S1切换占比专题优化分析报告.docx LTE_TDD问题定位指导书-吞吐量篇.docx LTE三大常见指标优化指导书.xlsx LTE互操作邻区配置核查原则.docx LTE信令流程详解指导书.docx LTE切换问题定位指导一(定位思路和问题现象).docx LTE劣化小区优化指导手册.docx LTE容量优化高负荷小区优化指导书.docx LTE小区搜索过程学习.docx LTE小区级与邻区级切换参数说明.docx LTE差小区处理思路和步骤.docx LTE干扰日常分析介绍.docx LTE异频同频切换.docx LTE弱覆盖问题分析与优化.docx LTE网优电话面试问题-应答技巧.docx LTE网络切换优化.docx LTE高负荷小区容量优化指导书.docx LTE高铁优化之多频组网优化提升“用户感知,网络价值”.docx

    matlab程序代码项目案例:matlab程序代码项目案例matlab中Toolbox中带有的模型预测工具箱.zip

    matlab程序代码项目案例 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!

    pepeljugoski_01_0508.pdf

    pepeljugoski_01_0508

    szczepanek_01_0308.pdf

    szczepanek_01_0308

    oif2007.384.01_IEEE.pdf

    oif2007.384.01_IEEE

Global site tag (gtag.js) - Google Analytics