准备对MongoDB, Redis以及Tokyo Tyrant的读写做一个简单的测试,为了进行相对公平的测试,需要了解他们背后的实现机制,下面是一些比较:
存储实现的比较:
* 内存文件映像(Memory-File Mapping) Redis, MongoDB
* 文件 + Cache Tokyo Tyrant
* 内存: Redis, Tokyo Tyrant
Key/Value索引形式:
* B+ Tree : MongoDB, Tokyo Tyrant
* Hash Table: Redis, Tokyo Tyrant
* Fixed Length: Tokyo Tyrant
从上面的比较可以看出,Redis和MongoDB是基于系统内存映像文件,数据能命中在内存的时候读写操作性能应该是非常强的,当然,反过来,如果数据十分分散不能在内存命中,那么内存页的切换开销将是非常可怕的,MongoDB和Redis数据文件不同的是将数据存放在多个文件中,每当上一个存满的时候就会创建新的数据空间文件。鉴于MongoDB 是主要比较对象,而其采用B+Tree进行存储,故TT也使用B+Tree引擎进行比较。
那么该测试什么自然就可以得知:尽管使用内存映像文件读写操作会很快(快到什么程度),但是当写满内存以后呢?
文件大小限制:
32bit: MongoDB <= 2G
TT no limits if u ./configure --enable-off
64bit: MongoDB和TT均无限制。
注:Redis 总是受限于内存的大小。
为了进行相对公平的测试:
首先通过虚拟机对内存的使用进行同等限制,因为MongoDB和Redi实际上读写都是在内存操作的(利用MemoryMap文件),故当数据库的大小超过内存大小时候的性能尤为重要。故用虚拟机来设置一个较小的内存大小,来快速观察数据库大小超过内存的时候的性能。
这里设置虚拟机内存256M,实际可使用内存200M左右,CPU 2核,Unbuntu Server 9.10
测试记录:
Key: 512的随机字符串
Value: 大约5k的随机字符串
每项记录数据大小:大约5.5k
计划插入数据100000条:5.5k*1000=5.5M*100=550M 数据量大约 550M。
注:key开始是用1k的随机字符串来测试,但是在测试mongoDB 报告key too large to index, 因此减小key的大小到512字节。
当没有任何数据的时候:
MongoDB的大小:
64M: (db.0, db.1, ..)data FIle
16M: (database.ns) name space index file.
TC的大小:
133K btree.tcb
256 fixed.tcf
517K hash.tch
Redis的大小:
VirtualMemFile: 41M redis-3546.vm
DB: 0M
注:redis的文件初始大小基本等于你设置的内存以及内存页的大小,可以自己调整。redis通过定时存盘的策略进行保存,定时策略可以自行设置。
通常情况下,redis的数据库必须<=内存,如果要让redis的数据库大于内存,那么必须在配置中打开vm_enabled选项(貌似没用,当插入数据超过内存后,会被Unbuntu的后台保护进程给杀掉,如果设置了最大使用的内存,则数据已有记录数达到内存限值后不能继续插入新值)。
key/value 功能:
Redis: 读写key/value,value可以有各种结构,但Value无索引。
MongoDB: 以collection组织,key如果不特别指定将由系统作为ObjectId产生(指定使用“_id”字段),value是结构化的,value里的字段可以被索引。
TokyoTyrant: 读写key/value,table 数据引擎支持结构化的value和字段索引,其它数据引擎不支持,b+tree可以用key索引。
基准测试机器:
虚拟机是跑在 2 CPU 2.26G Intel Core 2 Duo,内存为2G
虚拟机:
CPU 2核
内存 256M
操作系统:Unbuntu Server 9.10 32bit
使用软件版本:
* MongoDB: mongodb-linux-i686-2010-02-26
* TokyoTyrant: TT1.1.40; TC1.4.42
* Redis: 2010-03-01(GIT SRC)
启动:
redis-server ./redis.conf(设置了最大内存210兆:maxmemory 210000000, vm-enable=yes,vm-max-memory 20000000,vm-pages 1342177)
./ttserver -port 1974 /data/db/tt.tcb
bin/mongod -port 1974 --dbpath /data/db/mongo
MongoDB
如上所述测试添加10万条数据:
内存,刚开始的时候虚拟内存占用48564,物理内存占用 3432,在插入2000条数据后,虚拟内存到达143M,物理内存33M,内存增长很迅速。最后虚拟内存稳定在1048M,物理内存则在160M-211M徘徊。
CPU占用率最低的时候为6%,最高的时候达到30%,平时在8%-10%之间。
从测试看,每次分配DB空间的时候所有插入操作被冻结,最坏的一次插入2000条耗时1分多(这个时候正好有分配空间文件发生),平时,插入2000条数据大约耗时17-18秒。
最后MongoDB的数据文件总大小达到:977M
接着测试MongoDB读取10万条记录(非命中形式:该key是随机产生的,因此大都不会存在数据库中)
内存:虚拟内存稳定在1048M,物理内存占用在90M-94M。
CPU:最低占用8%,最高到45%;平时在10%-12%左右。
读取2000条记录大约耗时3-4秒,第一次用了6秒。
Redis
同样测试添加10万条数据:
内存,开始的时候忘记看了,大致较开始的虚拟内存占用112M,物理内存82M,在4万条记录的时候VM占用196M,物理内存占用163M,最后的时候VM占用237M,物理内存204M。
CPU:最低占用3%,最高的时候15%,平时在7%-11%之间。
当Redis向磁盘写入数据的时候,有变慢(2000条记录耗时21秒),平时存2000条记录大约耗时18-19秒左右。
不过没有设定maxmemory的时候,在大约写入 6万多个数据后服务器被挂掉。当设置最大使用内存(200M)后,达到内存限制,写入不了(已写入48136个数据),但是不会挂了。
Redis文件在写入48136个数据时候的大小(包括VM文件):277M,其中VM 41M,数据库236M。
接着测试Redis读取10万条记录(非命中形式:该key大都不会存在数据库中)
内存:虚拟内存237M,物理内存占用204M
CPU:在26%-43%
读取2000条记录大约耗时在3-4秒。
Tokyo Tyrant
如上所述测试添加10万条数据:采用默认配置参数运行TT B+Tree
内存:初始的时候VM: 76928 物理内存: 1232,在插入的过程内存的增加很少,在插入到4万条记录的时候虚拟内存仅为99540,物理内存23M,到最后虚拟内存117M,物理内存37M。
CPU占用率始终稳定在2%
在插入到5万条记录前,平均插入2000条耗时约19-20秒,到8万条记录前时候,插入2000条耗时20-22秒,再接下来的2万条,平均插入2000条耗时在慢慢增加并有震荡,28秒,最后到42秒(B+Tree的索引节点在内存中满了?可能需要调整参数?)。
TT的数据库只有一个文件大小为:589M
接着测试TT读取10万条记录(非命中形式:该key大都不会存在数据库中)
内存稳定在:VM110M;物理内存36M。
CPU:最低2%,最高6%,平时在4%
读取2000条记录大约耗时在7-8秒,偶尔6秒或9秒。
小结:
MongoDB和Redis写入数据不是直接写入磁盘,所以当重启系统时候没有存盘的数据将全部丢失。TT实际上也有内存缓冲,不过和前者相比要小的多。
以上测试并不完善,只是一个开始,比如没有测试小数据(以数字作为key,100字节Value),没有测试较大的数据(20K左右);没有测试在命中情况下的性能;没有测试并发读写的性能,据闻MongoDB的并发读写效率不是特别出色,MongoDB的特色在于支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,并实现了存储节点的自动sharding管理等配套功能;以及由于MongoDB是分布在多个文件中,当数据量远大内存,分布在足够多的文件的时候的性能;对开启同步日志后的Replication测试....对于TT来说,需要对TT的其它数据引擎进行测试,以及TT的各种数据引擎如何优化?TC/TT在mixi的实际应用当中,存储了2000万条以上的数据,同时支撑了上万个并发连接,是一个久经考验的项目。TC在保证了极高的并发读写性能的同时,具有可靠的数据持久化机制,同时还支持类似关系数据库表结构的hashtable以及简单的条件,分页和排序操作,是一个很棒的NoSQL数据库。TC的主要缺点是在数据量达到上亿级别以后,并发写数据性能会大幅度下降(读不受影响),NoSQL: If Only It Was That Easy提到,他们发现在TC里面插入1.6亿条2-20KB数据的时候,写入性能开始急剧下降。Redis本质上是一个Key-Value类型的内存数据库,很像memcached,整个数据库统统加载在内存当中进行操作,定期通过异步操作把数据库数据flush到硬盘上进行保存。因为是纯内存操作,Redis的性能非常出色,Redis最大的魅力是支持保存List链表和Set集合的数据结构,而且还支持对List进行各种操作,例如从List两端push和pop数据,取 List区间,排序等等,对Set支持各种集合的并集交集操作,此外单个value的最大限制是1GB,不像memcached只能保存1MB的数据,Redis可以用来实现很多有用的功能,比方说用他的List来做FIFO双向链表,实现一个轻量级的高性能消息队列服务,用他的Set可以做高性能的tag系统等等。另外Redis也可以对存入的Key-Value设置expire时间,因此也可以被当作一个功能加强版的memcached来用。
相关推荐
例如,Memcached适合简单的键值对存储,MongoDB适合处理复杂的文档结构,Redis适用于需要高速读写和多数据结构操作的场景,而Tokyo Tyrant则提供了一个轻量级的解决方案。 在学习和使用过程中,可能会涉及到的知识...
1. 键值(Key-Value)存储数据库,如Redis、Tokyo Cabinet/Tyrant,适合内容缓存,优点是查询快速,但结构化程度低。 2. 列存储数据库,如Cassandra、HBase,适用于分布式文件系统,优点在于查找速度快,扩展性强,但...
* 键值(Key-Value)存储数据库:相关产品有 Tokyo Cabinet/Tyrant、Redis、Voldemort、Berkeley DB。典型应用:内容缓存,主要用于处理大量数据的高访问负载。数据模型:一系列键值对。优势:快速查询;劣势:存储的...
1. 键值(Key-Value)存储数据库:以键值对的形式存储数据,典型产品包括Redis、Tokyo Cabinet/Tyrant等。主要应用在内容缓存的场景中,优势是快速查询,劣势是存储的数据缺少结构化。 2. 列存储数据库:采用列簇式...
1. **键值(Key-Value)存储数据库**:这类数据库通过键值对的形式存储数据,例如Tokyo Cabinet/Tyrant、Redis、Voldemort、Berkeley DB。它们适用于内容缓存等需要处理大量数据的高访问负载场景。优点在于能够实现...
- **键值存储数据库**:如Tokyo Cabinet/Tyrant、Redis等,适用于需要快速查询的应用场景。 - **列存储数据库**:如Cassandra、HBase等,适合分布式文件系统等应用。 - **文档型数据库**:如CouchDB、MongoDB等,...
1. **键值(Key-Value)存储数据库**:如Tokyo Cabinet/Tyrant、Redis、Voldemort等。这类数据库适用于需要高速访问的大规模数据存储场景。其数据模型为一系列键值对,具有快速查询的优势,但存储的数据缺少结构化特性...
例如:Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB。 2. 列存储数据库:这部分数据库通常是用来应对分布式存储的海量数据。键仍然存在,但是它们的特点是指向了多个列。这些列是由列家族来安排的。例如:...
- **键值(Key-Value)存储数据库**:例如Tokyo Cabinet/Tyrant、Redis、Voldemort等。这类数据库以键值对的形式存储数据,适合于内容缓存场景。 - **列存储数据库**:如Cassandra、HBase、Riak等。它们通过列簇存储...
1. 键值存储(Key-Value):典型代表如Redis、Tokyo Cabinet/Tyrant等,适用于内容缓存,处理高访问负载。 2. 列式数据库:代表包括Cassandra、HBase等,擅长处理分布式文件系统,易扩展,适合分布式扩展。 3. 文档...
* Key-Value 存储,例如 Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB。 * 列式数据库,例如 Cassandra, HBase, Riak。 * 文档型数据库,例如 CouchDB, MongoDB。 * 图结构数据库,例如 Neo4J, InfoGrid, ...
- **键值存储**:例如Redis、Tokyo Cabinet/Tyrant,适合快速查找键对应的值,对于非结构化数据非常友好。 - **图存储**:如Neo4J、FlockDB,专门针对图形数据模型进行优化,非常适合社交网络和推荐系统等应用场景。...
key-value存储如Tokyo Cabinet/Tyrant和Redis提供快速的键值查找;图存储如Neo4J适合处理复杂的图形关系。 MongoDB作为一款文档型的NoSQL数据库,其主要特点包括: 1. **面向集合存储**:数据以集合(类似于关系...
比如,键值存储数据库如Tokyo Tyrant和Voldemort适合缓存应用;列存储数据库如HBase适用于分布式文件系统;文档型数据库如MongoDB适合结构化程度较低的数据;图形数据库如Neo4j适用于处理复杂的网络结构数据。 总结...
1. **键值存储**:如Tokyo Cabinet/Tyrant、Berkeley DB、MemcacheDB、Redis等,特点是使用键值对形式存储数据,访问速度快,但缺乏复杂查询功能。 2. **文档数据库**:如MongoDB、CouchDB等,使用JSON或类似格式...
Tokyo Cabinet具有高性能和多种存储引擎选择,Tokyo Tyrant则通过热备份、update log和异步复制提高可用性,并允许通过Lua脚本进行原子性操作。 3. MongoDB:MongoDB是一个面向文档的数据库,支持无固定规格的JSON...
代表性产品包括Tokyo Cabinet/Tyrant、Redis、Voldemort 和 Oracle BDB。 - **列式数据库:**采用列簇式存储方式,将同一列的数据存储在一起,便于对特定列进行高效检索。代表性产品包括 Cassandra、HBase 和 Riak。...