- 浏览: 333490 次
- 性别:
- 来自: 北京
文章分类
- 全部博客 (140)
- oracle (2)
- j2se (18)
- 应用服务器 (2)
- 操作系统 (21)
- j2ee (3)
- web (9)
- Junit (0)
- 项目 (0)
- IDE (0)
- 五花八门 (1)
- excel导入导出 (0)
- DWR (0)
- display标签总结 (0)
- JS (7)
- FCKeditor (0)
- Spring (3)
- webservice (1)
- JVM (14)
- 传输协议 (6)
- maven (3)
- 服务器 (2)
- 数据结构 (11)
- HTTPClient (2)
- JQUERY (9)
- 设计模式 (4)
- 数据库 (6)
- 看书笔记 (0)
- 工具 (4)
- MINA (3)
- mysql (5)
- jetty (1)
- JAVA网络编程 (7)
- Hessian (1)
- ibatis (1)
- socket (4)
- Native (1)
- http (2)
- nosql (2)
- linux (1)
- hadoop (1)
最新评论
-
applezjv:
可以...
maven常见问题 -
andyboy_bin:
p
Jetty -
ye_wx:
...
TableSpace -
ye_wx:
TableSpace -
极限_裁决:
引用第二:不要把“好像”;“有人会……”;“大概”;“晚些时候 ...
可以让你少奋斗10年的工作经验
Java内存分配与管理是Java的核心技术之一,一般Java在内存分配时会涉及到以下区域:
◆寄存器:我们在程序中无法控制
◆栈:存放基本类型的数据和对象的引用,但对象本身不存放在栈中,而是存放在堆中
◆堆:存放用new产生的数据
◆静态域:存放在对象中用static定义的静态成员
◆常量池:存放常量
◆非RAM存储:硬盘等永久存储空间
Java内存分配中的栈
在函数中定义的一些基本类型的变量数据和对象的引用变量都在函数的栈内存中分配。
当在一段代码块定义一个变量时,Java就在栈中 为这个变量分配内存空间,当该变量退出该作用域后,Java会自动释放掉为该变量所分配的内存空间,该内存空间可以立即被另作他用。
Java内存分配中的堆
堆内存用来存放由new创建的对象和数组。 在堆中分配的内存,由Java虚拟机的自动垃圾回收器来管理。
在堆中产生了一个数组或对象后,还可以 在栈中定义一个特殊的变量,让栈中这个变量的取值等于数组或对象在堆内存中的首地址,栈中的这个变量就成了数组或对象的引用变量。 引用变量就相当于是 为数组或对象起的一个名称,以后就可以在程序中使用栈中的引用变量来访问堆中的数组或对象。引用变量就相当于是为数组或者对象起的一个名称。
引用变量是普通的变量,定义时在栈中分配,引用变量在程序运行到其作用域之外后被释放。而数组和对象本身在堆中分配,即使程序 运行到使用 new 产生数组或者对象的语句所在的代码块之外,数组和对象本身占据的内存不会被释放,数组和对象在没有引用变量指向它的时候,才变为垃圾,不能在被使用,但仍 然占据内存空间不放,在随后的一个不确定的时间被垃圾回收器收走(释放掉)。这也是 Java 比较占内存的原因。
实际上,栈中的变量指向堆内存中的变量,这就是Java中的指针!
常量池 (constant pool)
常量池指的是在编译期被确定,并被保存在已编译的.class文件中的一些数据。除了包含代码中所定义的各种基本类型(如int、long等等)和对象型(如String及数组)的常量值(final)还包含一些以文本形式出现的符号引用,比如:
◆类和接口的全限定名;
◆字段的名称和描述符;
◆方法和名称和描述符。
虚拟机必须为每个被装载的类型维护一个常量池。常量池就是该类型所用到常量的一个有序集和,包括直接常量(string,integer和 floating point常量)和对其他类型,字段和方法的符号引用。
对于String常量,它的值是在常量池中的。而JVM中的常量池在内存当中是以表的形式存在的, 对于String类型,有一张固定长度的CONSTANT_String_info表用来存储文字字符串值,注意:该表只存储文字字符串值,不存储符号引 用。说到这里,对常量池中的字符串值的存储位置应该有一个比较明了的理解了。
在程序执行的时候,常量池 会储存在Method Area,而不是堆中。
堆与栈
Java的堆是一个运行时数据区,类的(对象从中分配空间。这些对象通过new、newarray、 anewarray和multianewarray等指令建立,它们不需要程序代码来显式的释放。堆是由垃圾回收来负责的,堆的优势是可以动态地分配内存 大小,生存期也不必事先告诉编译器,因为它是在运行时动态分配内存的,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态 分配内存,存取速度较慢。
栈的优势是,存取速度比堆要快,仅次于寄存器,栈数据可以共享。但缺点是,存在栈中的数据大小与生存期必须是 确定的,缺乏灵活性。栈中主要存放一些基本类型的变量数据(int, short, long, byte, float, double, boolean, char)和对象句柄(引用)。
栈有一个很重要的特殊性,就是存在栈中的数据可以共享。假设我们同时定义:
1. int a = 3;
2. int b = 3;
编译器先处理int a = 3;首先它会在栈中创建一个变量为a的引用,然后查找栈中是否有3这个值,如果没找到,就将3存放进来,然后将a指向3。接着处理int b = 3;在创建完b的引用变量后,因为在栈中已经有3这个值,便将b直接指向3。这样,就出现了a与b同时均指向3的情况。
这时,如果再令 a=4;那么编译器会重新搜索栈中是否有4值,如果没有,则将4存放进来,并令a指向4;如果已经有了,则直接将a指向这个地址。因此a值的改变不会影响 到b的值。
要注意这种数据的共享与两个对象的引用同时指向一个对象的这种共享是不同的,因为这种情况a的修改并不会影响到b, 它是由编译器完成的,它有利于节省空间。而一个对象引用变量修改了这个对象的内部状态,会影响到另一个对象引用变量。
String是一个特殊的包装类数据。可以用:
String str = new String("abc");
String str = "abc";
两种的形式来创建,第一种是用new()来新建对象的,它会在存放于堆中。每调用一次就会创建一个新的对象。而第二种是先在栈中创建一个对String类的对象引用变量str,然后通过符号引用去字符串常量池 里找有没有"abc",如果没有,则将"abc"存放进字符串常量池 ,并令str指向”abc”,如果已经有”abc” 则直接令str指向“abc”。
比较类里面的数值是否相等时,用equals()方法;当测试两个包装类的引用是否指向同一个对象时,用==,下面用例子说明上面的理论。
1.String str1 = "abc";
2.String str2 = "abc";
3.System.out.println(str1==str2); //true
可以看出str1和str2是指向同一个对象的。
1.String str1 =new String ("abc");
2.String str2 =new String ("abc");
3.System.out.println(str1==str2); // false
用new的方式是生成不同的对象。每一次生成一个。
因此用第二种方式创建多个”abc”字符串,在内存中 其实只存在一个对象而已. 这种写法有利与节省内存空间. 同时它可以在一定程度上提高程序的运行速度,因为JVM会自动根据栈中数据的实际情况来决定是否有必要创建新对象。而对于String str = new String("abc");的代码,则一概在堆中创建新对象,而不管其字符串值是否相等,是否有必要创建新对象,从而加重了程序的负担。
另 一方面, 要注意: 我们在使用诸如String str = "abc";的格式定义类时,总是想当然地认为,创建了String类的对象str。担心陷阱!对象可能并没有被创建!而可能只是指向一个先前已经创建的 对象。只有通过new()方法才能保证每次都创建一个新的对象。
由于String类的immutable性质,当String变量需要经常变换 其值时,应该考虑使用StringBuffer类,以提高程序效率。
1. 首先String不属于8种基本数据类型,String是一个对象。因为对象的默认值是null,所以String的默认值也是null;但它又是一种特殊的对象,有其它对象没有的一些特性。
2. new String()和new String(”")都是申明一个新的空字符串,是空串不是null;
3. String str=”kvill”;String str=new String (”kvill”)的区别
示例:
1.String s0="kvill";
2.String s1="kvill";
3.String s2="kv" + "ill";
4.System.out.println( s0==s1 );
5.System.out.println( s0==s2 );
结果为:
true
true
首先,我们要知结果为道Java 会确保一个字符串常量只有一个拷贝。
因为例子中的 s0和s1中的”kvill”都是字符串常量,它们在编译期就被确定了,所以s0==s1为true;而”kv”和”ill”也都是字符串常量,当一个字 符串由多个字符串常量连接而成时,它自己肯定也是字符串常量,所以s2也同样在编译期就被解析为一个字符串常量,所以s2也是常量池中” kvill”的一个引用。所以我们得出s0==s1==s2;用new String() 创建的字符串不是常量,不能在编译期就确定,所以new String() 创建的字符串不放入常量池中,它们有自己的地址空间。
示例:
6.String s0="kvill";
7.String s1=new String("kvill");
8.String s2="kv" + new String("ill");
9.System.out.println( s0==s1 );
10.System.out.println( s0==s2 );
11.System.out.println( s1==s2 );
结果为:
false
false
false
例2中s0还是常量池 中"kvill”的应用,s1因为无法在编译期确定,所以是运行时创建的新对象”kvill”的引用,s2因为有后半部分 new String(”ill”)所以也无法在编译期确定,所以也是一个新创建对象”kvill”的应用;明白了这些也就知道为何得出此结果了。
4. String.intern():
再补充介绍一点:存在于.class文件中的常量池,在运行期被JVM装载,并且可以扩充。String的 intern()方法就是扩充常量池的 一个方法;当一个String实例str调用intern()方法时,Java 查找常量池中 是否有相同Unicode的字符串常量,如果有,则返回其的引用,如果没有,则在常 量池中增加一个Unicode等于str的字符串并返回它的引用;看示例就清楚了
示例:
1.String s0= "kvill";
2.String s1=new String("kvill");
3.String s2=new String("kvill");
4.System.out.println( s0==s1 );
5.System.out.println( "**********" );
6.s1.intern();
7.s2=s2.intern(); //把常量池中"kvill"的引用赋给s2
8.System.out.println( s0==s1);
9.System.out.println( s0==s1.intern() );
10.System.out.println( s0==s2 );
结果为:
false
false //虽然执行了s1.intern(),但它的返回值没有赋给s1
true //说明s1.intern()返回的是常量池中"kvill"的引用
true
最后我再破除一个错误的理解:有人说,“使用 String.intern() 方法则可以将一个 String 类的保存到一个全局 String 表中 ,如果具有相同值的 Unicode 字符串已经在这个表中,那么该方法返回表中已有字符串的地址,如果在表中没有相同值的字符串,则将自己的地址注册到表中”如果我把他说的这个全局的 String 表理解为常量池的话,他的最后一句话,”如果在表中没有相同值的字符串,则将自己的地址注册到表中”是错的:
示例:
1.String s1=new String("kvill");
2.String s2=s1.intern();
3.System.out.println( s1==s1.intern() );
4.System.out.println( s1+" "+s2 );
5.System.out.println( s2==s1.intern() );
结果:
1. false
2. kvill kvill
3. true
在这个类中我们没有声名一个”kvill”常量,所以常量池中一开始是没有”kvill”的,当我们调用s1.intern()后就在常量池中新添加了一 个”kvill”常量,原来的不在常量池中的”kvill”仍然存在,也就不是“将自己的地址注册到常量池中”了。
s1==s1.intern() 为false说明原来的”kvill”仍然存在;s2现在为常量池中”kvill”的地址,所以有s2==s1.intern()为true。
5. 关于equals()和==:
这个对于String简单来说就是比较两字符串的Unicode序列是否相当,如果相等返回true;而==是 比较两字符串的地址是否相同,也就是是否是同一个字符串的引用。
6. 关于String是不可变的
这一说又要说很多,大家只 要知道String的实例一旦生成就不会再改变了,比如说:String str=”kv”+”ill”+” “+”ans”; 就是有4个字符串常量,首先”kv”和”ill”生成了”kvill”存在内存中,然后”kvill”又和” ” 生成 “kvill “存在内存中,最后又和生成了”kvill ans”;并把这个字符串的地址赋给了str,就是因为String的”不可变”产生了很多临时变量,这也就是为什么建议用StringBuffer的原 因了,因为StringBuffer是可改变的。
下面是一些String相关的常见问题:
String中的final用法和理解
final StringBuffer a = new StringBuffer("111");
final StringBuffer b = new StringBuffer("222");
a=b;//此句编译不通过
final StringBuffer a = new StringBuffer("111");
a.append("222");// 编译通过
可见,final只对引用的"值"(即内存地址)有效,它迫使引用只能指向初始指向的那个对象,改变它的指向会导致编译期错误。至于它所指向的对象 的变化,final是不负责的。
String常量池问题的几个例子
下面是几个常见例子的比较分析和理解:
String a = "a1";
String b = "a" + 1;
System.out.println((a == b)); //result = true
String a = "atrue";
String b = "a" + "true";
System.out.println((a == b)); //result = true
String a = "a3.4";
String b = "a" + 3.4;
System.out.println((a == b)); //result = true
分析:JVM对于字符串常量的"+"号连接,将程序编译期,JVM就将常量字符串的"+"连接优化为连接后的值,拿"a" + 1来说,经编译器优化后在class中就已经是a1。在编译期其字符串常量的值就确定下来,故上面程序最终的结果都为true。
String a = "ab";
String bb = "b";
String b = "a" + bb;
System.out.println((a == b)); //result = false
分析:JVM对于字符串引用,由于在字符串的"+"连接中,有字符串引用存在,而引用的值在程序编译期是无法确定的,即"a" + bb无法被编译器优化,只有在程序运行期来动态分配并将连接后的新地址赋给b。所以上面程序的结果也就为false。
String a = "ab";
final String bb = "b";
String b = "a" + bb;
System.out.println((a == b)); //result = true
分析:和[3]中唯一不同的是bb字符串加了final修饰,对于final修饰的变量,它在编译时被解析为常量值的一个本地拷贝存储到自己的常量 池中或嵌入到它的字节码流中。所以此时的"a" + bb和"a" + "b"效果是一样的。故上面程序的结果为true。
String a = "ab";
final String bb = getBB();
String b = "a" + bb;
System.out.println((a == b)); //result = false
private static String getBB() {
return "b";
}
分析:JVM对于字符串引用bb,它的值在编译期无法确定,只有在程序运行期调用方法后,将方法的返回值和"a"来动态连接并分配地址为b,故上面 程序的结果为false。
通过上面4个例子可以得出得知:
String s = "a" + "b" + "c";
就等价于String s = "abc";
String a = "a";
String b = "b";
String c = "c";
String s = a + b + c;
这个就不一样了,最终结果等于:
1.StringBuffer temp = new StringBuffer();
2.temp.append(a).append(b).append(c);
3.String s = temp.toString();
由上面的分析结果,可就不难推断出String 采用连接运算符(+)效率低下原因分析,形如这样的代码:
public class Test {
public static void main(String args[]) {
String s = null;
for(int i = 0; i
◆寄存器:我们在程序中无法控制
◆栈:存放基本类型的数据和对象的引用,但对象本身不存放在栈中,而是存放在堆中
◆堆:存放用new产生的数据
◆静态域:存放在对象中用static定义的静态成员
◆常量池:存放常量
◆非RAM存储:硬盘等永久存储空间
Java内存分配中的栈
在函数中定义的一些基本类型的变量数据和对象的引用变量都在函数的栈内存中分配。
当在一段代码块定义一个变量时,Java就在栈中 为这个变量分配内存空间,当该变量退出该作用域后,Java会自动释放掉为该变量所分配的内存空间,该内存空间可以立即被另作他用。
Java内存分配中的堆
堆内存用来存放由new创建的对象和数组。 在堆中分配的内存,由Java虚拟机的自动垃圾回收器来管理。
在堆中产生了一个数组或对象后,还可以 在栈中定义一个特殊的变量,让栈中这个变量的取值等于数组或对象在堆内存中的首地址,栈中的这个变量就成了数组或对象的引用变量。 引用变量就相当于是 为数组或对象起的一个名称,以后就可以在程序中使用栈中的引用变量来访问堆中的数组或对象。引用变量就相当于是为数组或者对象起的一个名称。
引用变量是普通的变量,定义时在栈中分配,引用变量在程序运行到其作用域之外后被释放。而数组和对象本身在堆中分配,即使程序 运行到使用 new 产生数组或者对象的语句所在的代码块之外,数组和对象本身占据的内存不会被释放,数组和对象在没有引用变量指向它的时候,才变为垃圾,不能在被使用,但仍 然占据内存空间不放,在随后的一个不确定的时间被垃圾回收器收走(释放掉)。这也是 Java 比较占内存的原因。
实际上,栈中的变量指向堆内存中的变量,这就是Java中的指针!
常量池 (constant pool)
常量池指的是在编译期被确定,并被保存在已编译的.class文件中的一些数据。除了包含代码中所定义的各种基本类型(如int、long等等)和对象型(如String及数组)的常量值(final)还包含一些以文本形式出现的符号引用,比如:
◆类和接口的全限定名;
◆字段的名称和描述符;
◆方法和名称和描述符。
虚拟机必须为每个被装载的类型维护一个常量池。常量池就是该类型所用到常量的一个有序集和,包括直接常量(string,integer和 floating point常量)和对其他类型,字段和方法的符号引用。
对于String常量,它的值是在常量池中的。而JVM中的常量池在内存当中是以表的形式存在的, 对于String类型,有一张固定长度的CONSTANT_String_info表用来存储文字字符串值,注意:该表只存储文字字符串值,不存储符号引 用。说到这里,对常量池中的字符串值的存储位置应该有一个比较明了的理解了。
在程序执行的时候,常量池 会储存在Method Area,而不是堆中。
堆与栈
Java的堆是一个运行时数据区,类的(对象从中分配空间。这些对象通过new、newarray、 anewarray和multianewarray等指令建立,它们不需要程序代码来显式的释放。堆是由垃圾回收来负责的,堆的优势是可以动态地分配内存 大小,生存期也不必事先告诉编译器,因为它是在运行时动态分配内存的,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态 分配内存,存取速度较慢。
栈的优势是,存取速度比堆要快,仅次于寄存器,栈数据可以共享。但缺点是,存在栈中的数据大小与生存期必须是 确定的,缺乏灵活性。栈中主要存放一些基本类型的变量数据(int, short, long, byte, float, double, boolean, char)和对象句柄(引用)。
栈有一个很重要的特殊性,就是存在栈中的数据可以共享。假设我们同时定义:
1. int a = 3;
2. int b = 3;
编译器先处理int a = 3;首先它会在栈中创建一个变量为a的引用,然后查找栈中是否有3这个值,如果没找到,就将3存放进来,然后将a指向3。接着处理int b = 3;在创建完b的引用变量后,因为在栈中已经有3这个值,便将b直接指向3。这样,就出现了a与b同时均指向3的情况。
这时,如果再令 a=4;那么编译器会重新搜索栈中是否有4值,如果没有,则将4存放进来,并令a指向4;如果已经有了,则直接将a指向这个地址。因此a值的改变不会影响 到b的值。
要注意这种数据的共享与两个对象的引用同时指向一个对象的这种共享是不同的,因为这种情况a的修改并不会影响到b, 它是由编译器完成的,它有利于节省空间。而一个对象引用变量修改了这个对象的内部状态,会影响到另一个对象引用变量。
String是一个特殊的包装类数据。可以用:
String str = new String("abc");
String str = "abc";
两种的形式来创建,第一种是用new()来新建对象的,它会在存放于堆中。每调用一次就会创建一个新的对象。而第二种是先在栈中创建一个对String类的对象引用变量str,然后通过符号引用去字符串常量池 里找有没有"abc",如果没有,则将"abc"存放进字符串常量池 ,并令str指向”abc”,如果已经有”abc” 则直接令str指向“abc”。
比较类里面的数值是否相等时,用equals()方法;当测试两个包装类的引用是否指向同一个对象时,用==,下面用例子说明上面的理论。
1.String str1 = "abc";
2.String str2 = "abc";
3.System.out.println(str1==str2); //true
可以看出str1和str2是指向同一个对象的。
1.String str1 =new String ("abc");
2.String str2 =new String ("abc");
3.System.out.println(str1==str2); // false
用new的方式是生成不同的对象。每一次生成一个。
因此用第二种方式创建多个”abc”字符串,在内存中 其实只存在一个对象而已. 这种写法有利与节省内存空间. 同时它可以在一定程度上提高程序的运行速度,因为JVM会自动根据栈中数据的实际情况来决定是否有必要创建新对象。而对于String str = new String("abc");的代码,则一概在堆中创建新对象,而不管其字符串值是否相等,是否有必要创建新对象,从而加重了程序的负担。
另 一方面, 要注意: 我们在使用诸如String str = "abc";的格式定义类时,总是想当然地认为,创建了String类的对象str。担心陷阱!对象可能并没有被创建!而可能只是指向一个先前已经创建的 对象。只有通过new()方法才能保证每次都创建一个新的对象。
由于String类的immutable性质,当String变量需要经常变换 其值时,应该考虑使用StringBuffer类,以提高程序效率。
1. 首先String不属于8种基本数据类型,String是一个对象。因为对象的默认值是null,所以String的默认值也是null;但它又是一种特殊的对象,有其它对象没有的一些特性。
2. new String()和new String(”")都是申明一个新的空字符串,是空串不是null;
3. String str=”kvill”;String str=new String (”kvill”)的区别
示例:
1.String s0="kvill";
2.String s1="kvill";
3.String s2="kv" + "ill";
4.System.out.println( s0==s1 );
5.System.out.println( s0==s2 );
结果为:
true
true
首先,我们要知结果为道Java 会确保一个字符串常量只有一个拷贝。
因为例子中的 s0和s1中的”kvill”都是字符串常量,它们在编译期就被确定了,所以s0==s1为true;而”kv”和”ill”也都是字符串常量,当一个字 符串由多个字符串常量连接而成时,它自己肯定也是字符串常量,所以s2也同样在编译期就被解析为一个字符串常量,所以s2也是常量池中” kvill”的一个引用。所以我们得出s0==s1==s2;用new String() 创建的字符串不是常量,不能在编译期就确定,所以new String() 创建的字符串不放入常量池中,它们有自己的地址空间。
示例:
6.String s0="kvill";
7.String s1=new String("kvill");
8.String s2="kv" + new String("ill");
9.System.out.println( s0==s1 );
10.System.out.println( s0==s2 );
11.System.out.println( s1==s2 );
结果为:
false
false
false
例2中s0还是常量池 中"kvill”的应用,s1因为无法在编译期确定,所以是运行时创建的新对象”kvill”的引用,s2因为有后半部分 new String(”ill”)所以也无法在编译期确定,所以也是一个新创建对象”kvill”的应用;明白了这些也就知道为何得出此结果了。
4. String.intern():
再补充介绍一点:存在于.class文件中的常量池,在运行期被JVM装载,并且可以扩充。String的 intern()方法就是扩充常量池的 一个方法;当一个String实例str调用intern()方法时,Java 查找常量池中 是否有相同Unicode的字符串常量,如果有,则返回其的引用,如果没有,则在常 量池中增加一个Unicode等于str的字符串并返回它的引用;看示例就清楚了
示例:
1.String s0= "kvill";
2.String s1=new String("kvill");
3.String s2=new String("kvill");
4.System.out.println( s0==s1 );
5.System.out.println( "**********" );
6.s1.intern();
7.s2=s2.intern(); //把常量池中"kvill"的引用赋给s2
8.System.out.println( s0==s1);
9.System.out.println( s0==s1.intern() );
10.System.out.println( s0==s2 );
结果为:
false
false //虽然执行了s1.intern(),但它的返回值没有赋给s1
true //说明s1.intern()返回的是常量池中"kvill"的引用
true
最后我再破除一个错误的理解:有人说,“使用 String.intern() 方法则可以将一个 String 类的保存到一个全局 String 表中 ,如果具有相同值的 Unicode 字符串已经在这个表中,那么该方法返回表中已有字符串的地址,如果在表中没有相同值的字符串,则将自己的地址注册到表中”如果我把他说的这个全局的 String 表理解为常量池的话,他的最后一句话,”如果在表中没有相同值的字符串,则将自己的地址注册到表中”是错的:
示例:
1.String s1=new String("kvill");
2.String s2=s1.intern();
3.System.out.println( s1==s1.intern() );
4.System.out.println( s1+" "+s2 );
5.System.out.println( s2==s1.intern() );
结果:
1. false
2. kvill kvill
3. true
在这个类中我们没有声名一个”kvill”常量,所以常量池中一开始是没有”kvill”的,当我们调用s1.intern()后就在常量池中新添加了一 个”kvill”常量,原来的不在常量池中的”kvill”仍然存在,也就不是“将自己的地址注册到常量池中”了。
s1==s1.intern() 为false说明原来的”kvill”仍然存在;s2现在为常量池中”kvill”的地址,所以有s2==s1.intern()为true。
5. 关于equals()和==:
这个对于String简单来说就是比较两字符串的Unicode序列是否相当,如果相等返回true;而==是 比较两字符串的地址是否相同,也就是是否是同一个字符串的引用。
6. 关于String是不可变的
这一说又要说很多,大家只 要知道String的实例一旦生成就不会再改变了,比如说:String str=”kv”+”ill”+” “+”ans”; 就是有4个字符串常量,首先”kv”和”ill”生成了”kvill”存在内存中,然后”kvill”又和” ” 生成 “kvill “存在内存中,最后又和生成了”kvill ans”;并把这个字符串的地址赋给了str,就是因为String的”不可变”产生了很多临时变量,这也就是为什么建议用StringBuffer的原 因了,因为StringBuffer是可改变的。
下面是一些String相关的常见问题:
String中的final用法和理解
final StringBuffer a = new StringBuffer("111");
final StringBuffer b = new StringBuffer("222");
a=b;//此句编译不通过
final StringBuffer a = new StringBuffer("111");
a.append("222");// 编译通过
可见,final只对引用的"值"(即内存地址)有效,它迫使引用只能指向初始指向的那个对象,改变它的指向会导致编译期错误。至于它所指向的对象 的变化,final是不负责的。
String常量池问题的几个例子
下面是几个常见例子的比较分析和理解:
String a = "a1";
String b = "a" + 1;
System.out.println((a == b)); //result = true
String a = "atrue";
String b = "a" + "true";
System.out.println((a == b)); //result = true
String a = "a3.4";
String b = "a" + 3.4;
System.out.println((a == b)); //result = true
分析:JVM对于字符串常量的"+"号连接,将程序编译期,JVM就将常量字符串的"+"连接优化为连接后的值,拿"a" + 1来说,经编译器优化后在class中就已经是a1。在编译期其字符串常量的值就确定下来,故上面程序最终的结果都为true。
String a = "ab";
String bb = "b";
String b = "a" + bb;
System.out.println((a == b)); //result = false
分析:JVM对于字符串引用,由于在字符串的"+"连接中,有字符串引用存在,而引用的值在程序编译期是无法确定的,即"a" + bb无法被编译器优化,只有在程序运行期来动态分配并将连接后的新地址赋给b。所以上面程序的结果也就为false。
String a = "ab";
final String bb = "b";
String b = "a" + bb;
System.out.println((a == b)); //result = true
分析:和[3]中唯一不同的是bb字符串加了final修饰,对于final修饰的变量,它在编译时被解析为常量值的一个本地拷贝存储到自己的常量 池中或嵌入到它的字节码流中。所以此时的"a" + bb和"a" + "b"效果是一样的。故上面程序的结果为true。
String a = "ab";
final String bb = getBB();
String b = "a" + bb;
System.out.println((a == b)); //result = false
private static String getBB() {
return "b";
}
分析:JVM对于字符串引用bb,它的值在编译期无法确定,只有在程序运行期调用方法后,将方法的返回值和"a"来动态连接并分配地址为b,故上面 程序的结果为false。
通过上面4个例子可以得出得知:
String s = "a" + "b" + "c";
就等价于String s = "abc";
String a = "a";
String b = "b";
String c = "c";
String s = a + b + c;
这个就不一样了,最终结果等于:
1.StringBuffer temp = new StringBuffer();
2.temp.append(a).append(b).append(c);
3.String s = temp.toString();
由上面的分析结果,可就不难推断出String 采用连接运算符(+)效率低下原因分析,形如这样的代码:
public class Test {
public static void main(String args[]) {
String s = null;
for(int i = 0; i
发表评论
-
java诊断工具
2013-04-01 19:12 1425jstack -- 如果java程序崩溃生成core文件,j ... -
JVM内存分析及导致内存溢出的不健壮代码及解决办法<转载>
2011-11-30 19:07 0一、JVM内存区域组成 java把内存分四种: 1、栈区( ... -
从JVM内存管理的角度谈谈静态方法和静态属性《转》
2011-11-30 19:06 0作者 robbin (http://hibernate.fan ... -
classloader 三
2011-10-24 23:22 916jvm classLoader architecture ... -
JVM
2011-10-06 21:15 1482安装Java开发软件时,默认安装包含两个文件夹,一个JDK(J ... -
java序列化
2011-10-04 23:48 793有关Java对象的序列化和反序列化也算是Java基础的一部 ... -
JVM优化配置
2011-08-20 22:32 849JVM 优化配置 ... -
JVM慢慢琢磨
2011-08-20 22:05 934原文:http://www.iteye.com/ ... -
内存分配策略
2011-08-20 21:32 871内存分配策略 按照编译原理的观点,程序运行时的内存分配 ... -
栈 堆
2011-08-20 19:01 1003栈 栈(stack)在计算机科学中是限定仅在表尾进行 ... -
堆栈区别
2011-08-18 22:23 869原文:http://www.iteye.com/topi ... -
JVM闲谈
2011-08-18 22:01 788java中内存分为堆内存和栈内存。 Java把内存划分成两 ... -
JVM 四
2011-08-02 18:22 796转自:http://blog.csdn.net/cute ... -
JVM
2011-08-02 18:20 164本文转自:http://blog.csdn.net/cu ... -
JVM
2011-08-02 14:59 1847JV ... -
jvm垃圾回收
2011-07-31 23:13 753Java里的对象并非总是被 ...
相关推荐
JVM内存管理主要包括内存结构、内存分配以及垃圾回收(GC)等方面。了解这些知识对于优化Java应用程序的性能至关重要。 ### 1. JVM内存结构 #### 1.1.1 JVM内存概述 JVM内存分为几个关键区域,每个区域都有特定的...
由于无法直接访问,我们可以假设博主可能讨论了JVM内存的分配策略、垃圾收集算法(如Minor GC、Major GC、Full GC)、内存泄漏检测以及如何通过工具(如VisualVM、JProfiler)进行内存分析和性能调优。 标签 "源码...
### JVM内存空间分配详解 #### 一、JVM内存模型概览 JVM(Java虚拟机)内存模型主要由以下几个部分组成:程序计数器、Java虚拟机栈、本地方法栈、Java堆以及方法区(在JDK 8之后称为元空间)。下面将对这几个部分...
在本文中,我们将详细探讨HeapAnalyzer的工作原理、主要功能以及如何使用它来分析JVM内存。 HeapAnalyzer的核心功能在于其对Java堆内存的深度分析。Java堆是Java应用中存储对象的主要内存区域,当对象不再被引用但...
本文将深入探讨如何在Java中获取JVM内存大小,包括堆内存的总量、最大值以及剩余空间,并解析给定代码片段中的关键概念。 ### JVM内存模型 在讨论如何获取JVM内存大小之前,首先需要理解JVM的内存布局。JVM内存...
本教程将涵盖JVM内存模型、内存分配以及优化策略。 一、JVM内存模型 1. 堆内存:堆是所有线程共享的一块内存区域,主要用于存储对象实例。Java中的动态内存分配主要在堆上进行,垃圾收集器也会对堆进行管理,进行...
`jmap`是Java的一个命令行工具,用于获取堆内存的详细信息,包括堆dump,这对于分析JVM内存状态非常有用。 本文将深入探讨JVM内存结构、`jmap`工具的使用以及如何分析`dump.txt`文件中的内存日志。 1. JVM内存结构...
本文将深入探讨Linux内存结构和JVM内存模型,以及如何通过提供的文件来分析它们。 首先,让我们了解Linux内存结构。Linux内存主要分为以下几个部分: 1. **物理内存**:这是计算机硬件中的RAM,用于存储正在运行的...
【ha456.jar(IBMHeapAnalyzer)JVM内存分析工具】是一款由IBM开发的专业工具,主要用于诊断Java虚拟机(JVM)的内存问题。它能够解析和分析JVM生成的内存转储文件(通常称为heap dump或hprof文件),帮助开发者识别...
### JVM内存结构详解 #### 一、概述 Java虚拟机(JVM)作为Java程序的运行环境,其核心组件之一便是内存管理系统。理解JVM的内存布局对于开发高性能的应用程序至关重要。本文将详细介绍JVM内存结构及其各个组成部分...
在进行MAT JVM内存分析时,我们首先要理解JVM内存的基本结构,它主要分为堆内存(Heap)和非堆内存(Non-Heap)。堆内存又细分为新生代(Young Generation)、老年代(Old Generation)和永久代(Permanent ...
### JVM内存管理详解 #### 一、引言 在探讨JVM内存管理之前,我们先来看一下为何要深入了解这一主题。对于深入掌握Java的人来说,内存管理是不可或缺的一部分。随着技术的发展,内存管理变得越来越自动化,但这也...
Java堆是JVM内存管理中最大的一块区域,它负责存储对象实例及数组值。在虚拟机启动时创建,并且被所有线程共享。堆是垃圾收集器管理的主要区域,其大小可以通过-Xms和-Xmx参数进行控制。在JDK 1.2版本之后,Java堆被...
本资料总结主要关注JVM内存分配及其运行原理,这对于理解和优化Java应用程序的性能至关重要。 1. **JVM内存结构** JVM内存分为几个关键区域:方法区(Method Area)、堆(Heap)、栈(Stack)、程序计数器(PC ...
"Jvm性能优化-JVM内存结构原理分析03" Jvm性能优化是Java虚拟机(JVM)中非常重要的一部分,它对Jvm的性能产生了很大的影响。本文将从Jvm内存结构的角度来分析Jvm性能优化的原理。 Jvm内存结构主要分为五部分:堆...
在"jvm内存分析-jdk17-memoryAnalyzer"这个主题中,我们将深入探讨JVM内存结构,特别是针对Java 17版本的内存配置和分析工具Memory Analyzer (MAT)。 JVM内存主要分为以下几个区域: 1. **堆内存**:这是Java程序...
#### 六、JVM内存分析参数 为了更好地监控和调整JVM的内存使用情况,可以利用一系列JVM参数来查看和调整内存分配情况,主要包括: - **程序计数器**:记录线程下一条要执行的指令位置。 - **堆**:线程共享,用于...
总结来说,理解JVM内存模型和参数设置对于优化Java应用程序性能至关重要。正确配置JVM参数可以防止内存溢出,降低垃圾回收频率,提升系统响应速度。同时,逃逸分析等优化技术也是提高程序执行效率的有效手段。在实际...
在“jvm的内存结构图的ppt模型分析”中,我们将深入探讨JVM内存的不同区域及其功能。 首先,JVM内存可以分为堆内存和栈内存两大主要部分,它们都是线程共享的。 1. **堆内存**:这是Java应用中所有对象实例的存储...
此外,还可以使用JConsole、VisualVM等工具,更直观地监控和分析JVM内存使用情况,这对于性能调优和问题排查极为有益。 #### 结语 合理设置和调优JVM内存参数,是提高Java应用性能的关键所在。通过对JVM内存管理...