我们已经学过重载(Overloading),对重载函数而言,C++的检查机制能通过函数参数的不同及所属类的不同。正确的调用重载函数。例如,为求两个数的最大值,我们定义MAX()函数需要对不同的数据类型分别定义不同重载(Overload)版本。
//函数1.
int max(int x,int y);
{return(x>y)?x:y ;}
//函数2.
float max( float x,float y){
return (x>y)? x:y ;}
//函数3.
double max(double x,double y)
{return (c>y)? x:y ;}
但如果在主函数中,我们分别定义了 char a,b; 那么在执行max(a,b);时 程序就会出错,因为我们没有定义char类型的重载版本。
现在,我们再重新审视上述的max()函数,它们都具有同样的功能,即求两个数的最大值,能否只写一套代码解决这个问题呢?这样就会避免因重载函数定义不 全面而带来的调用错误。为解决上述问题C++引入模板机制,模板定义:模板就是实现代码重用机制的一种工具,它可以实现类型参数化,即把类型定义为参数, 从而实现了真正的代码可重用性。模版可以分为两类,一个是函数模版,另外一个是类模版。
2. 函数模板的写法
函数模板的一般形式如下:
Template <class或者也可以用typename T>
返回类型 函数名(形参表)
{//函数定义体 }
说明: template是一个声明模板的关键字,表示声明一个模板关键字class不能省略,如果类型形参多余一个 ,每个形参前都要加class <类型 形参表>可以包含基本数据类型可以包含类类型.
请看以下程序:
//Test.cpp
#include <iostream>
using std::cout;
using std::endl;
//声明一个函数模版,用来比较输入的两个相同数据类型的参数的大小,class也可以被typename代替,
//T可以被任何字母或者数字代替。
template <class T>
T min(T x,T y)
{ return(x<y)?x:y;}
void main( )
{
int n1=2,n2=10;
double d1=1.5,d2=5.6;
cout<< "较小整数:"<<min(n1,n2)<<endl;
cout<< "较小实数:"<<min(d1,d2)<<endl;
system("PAUSE");
}
程序运行结果:
程序分析:main()函数中定义了两个整型变量n1 , n2 两个双精度类型变量d1 , d2然后调用min( n1, n2); 即实例化函数模板T min(T x, T y)其中T为int型,求出n1,n2中的最小值.同理调用min(d1,d2)时,求出d1,d2中的最小值.
3. 类模板的写法
定义一个类模板:
Template < class或者也可以用typename T >
class类名{
//类定义......
};
说明:其中,template是声明各模板的关键字,表示声明一个模板,模板参数可以是一个,也可以是多个。
例如:定义一个类模板:
// ClassTemplate.h
#ifndef ClassTemplate_HH
#define ClassTemplate_HH
template<typename T1,typename T2>
class myClass{
private:
T1 I;
T2 J;
public:
myClass(T1 a, T2 b);//Constructor
void show();
};
//这是构造函数
//注意这些格式
template <typename T1,typename T2>
myClass<T1,T2>::myClass(T1 a,T2 b):I(a),J(b){}
//这是void show();
template <typename T1,typename T2>
void myClass<T1,T2>::show()
{
cout<<"I="<<I<<", J="<<J<<endl;
}
#endif
// Test.cpp
#include <iostream>
#include "ClassTemplate.h"
using std::cout;
using std::endl;
void main()
{
myClass<int,int> class1(3,5);
class1.show();
myClass<int,char> class2(3,'a');
class2.show();
myClass<double,int> class3(2.9,10);
class3.show();
system("PAUSE");
}
最后结果显示:
一般来说,非类型模板参数可以是常整数(包括枚举)或者指向外部链接对象的指针。
那么就是说,浮点数是不行的,指向内部链接对象的指针是不行的。
template<typename T, int MAXSIZE>
class Stack{
Private:
T elems[MAXSIZE];
…
};
Int main()
{
Stack<int, 20> int20Stack;
Stack<int, 40> int40Stack;
…
};
5.使用模板类型
有时模板类型是一个容器或类,要使用该类型下的类型可以直接调用,以下是一个可打印STL中顺序和链的容器的模板函数
template <typename T>
void print(T v)
{
T::iterator itor;
for (itor = v.begin(); itor != v.end(); ++itor)
{
cout << *itor << " ";
}
cout << endl;
}
void main(int argc, char **argv){
list<int> l;
l.push_back(1);
l.push_front(2);
if(!l.empty())
print(l);
vector<int> vec;
vec.push_back(1);
vec.push_back(6);
if(!vec.empty())
print(vec);
}
打印结果
类型推导的隐式类型转换
在决定模板参数类型前,编译器执行下列隐式类型转换:
左值变换
修饰字转换
派生类到基类的转换
见《C++ Primer》([注2],P500)对此主题的完备讨论。
简而言之,编译器削弱了某些类型属性,例如我们例子中的引用类型的左值属性。举例来说,编译器用值类型实例化函数模板,而不是用相应的引用类型。
同样地,它用指针类型实例化函数模板,而不是相应的数组类型。
它去除const修饰,绝不会用const类型实例化函数模板,总是用相应的非 const类型,不过对于指针来说,指针和 const 指针是不同的类型。
底线是:自动模板参数推导包含类型转换,并且在编译器自动决定模板参数时某些类型属性将丢失。这些类型属性可以在使用显式函数模板参数申明时得以保留。
6. 模板的特化
如果我们打算给模板函数(类)的某个特定类型写一个函数,就需要用到模板的特化,比如我们打算用 long 类型调用 max 的时候,返回小的值(原谅我举了不恰当的例子):
template<> // 这代表了下面是一个模板函数
long max<long>( long a, long b ) // 对于 vc 来说,这里的 <long> 是可以省略的
{
return a > b ? b : a;
}
实际上,所谓特化,就是代替编译器完成了对指定类型的特化工作,现代的模板库中,大量的使用了这个技巧。
对于偏特化,则只针对模板类型中部分类型进行特化,如
template<T1, T2>
class MyClass;
template<T1, T2>
class MyCalss<int, T2>//偏特化
7. 仿函数
仿函数这个词经常会出现在模板库里(比如 STL),那么什么是仿函数呢?
顾名思义:仿函数就是能像函数一样工作的东西,请原谅我用东西这样一个代词,下面我会慢慢解释。
void dosome( int i )
这个 dosome 是一个函数,我们可以这样来使用它: dosome(5);
那么,有什么东西可以像这样工作么?
答案1:重载了 () 操作符的对象,因此,这里需要明确两点:
1 仿函数不是函数,它是个类;
2 仿函数重载了()运算符,使得它的对你可以像函数那样子调用(代码的形式好像是在调用比如:
struct DoSome
{
void operator()( int i );
}
DoSome dosome;
这里类(对 C++ 来说,struct 和类是相同的) 重载了 () 操作符,因此它的实例 dosome 可以这样用 dosome(5); 和上面的函数调用一模一样,不是么?所以 dosome 就是一个仿函数了。
实际上还有答案2:
函数指针指向的对象。
typedef void( *DoSomePtr )( int );
typedef void( DoSome )( int );
DoSomePtr *ptr=&func;
DoSome& dosome=*ptr;
dosome(5); // 这里又和函数调用一模一样了。
当然,答案3 成员函数指针指向的成员函数就是意料之中的答案了。
8. 仿函数的用处
不管是对象还是函数指针等等,它们都是可以被作为参数传递,或者被作为变量保存的。因此我们就可以把一个仿函数传递给一个函数,由这个函数根据需要来调用这个仿函数(有点类似回调)。
STL 模板库中,大量使用了这种技巧,来实现库的“灵活”。
比如:
for_each, 它的源代码大致如下:
template< typename Iterator, typename Functor >
void for_each( Iterator begin, Iterator end, Fucntor func )
{
for( ; begin!=end; begin++ )
func( *begin );
}
这个 for 循环遍历了容器中的每一个元素,对每个元素调用了仿函数 func,这样就实现了 对“每个元素做同样的事”这样一种编程的思想。
特别的,如果仿函数是一个对象,这个对象是可以有成员变量的,这就让 仿函数有了“状态”,从而实现了更高的灵活性。
QQ:346470752 Email:gaojunle@yahoo.com.cn
相关推荐
C++模板是C++语言中的一个强大特性,它允许程序员创建泛型代码,即能够处理多种数据类型的代码。模板在C++中分为两种主要类型:函数模板和类模板。函数模板用于定义可以接受不同类型参数的函数,而类模板用于创建...
通过这本书的学习,读者不仅能深入理解C++模板的原理,还能学会如何在实际项目中有效利用模板,提升代码质量和效率。无论你是初学者还是有经验的开发者,这都是一个不可多得的资源,帮助你进一步提升C++编程技能。
C++模板是C++语言中的一个强大特性,它允许我们编写通用代码,实现代码复用,提高效率。在深入实践C++模板编程的过程中,我们不仅可以理解模板的基本概念,还可以掌握其高级特性和应用技巧。 首先,我们要理解模板...
学习C++模板库基础,尤其是STL,不仅有助于理解C++的高级特性,还能提升代码质量,提高开发效率。通过阅读提供的"C++STL.pdf"文档,你可以深入了解每个部分的细节,掌握如何在实际项目中有效利用这些工具。
C++模板是C++语言中的一个强大特性,它允许程序员创建泛型代码,即能够处理多种数据类型的代码。...深入学习和实践C++模板编程,无论是对初学者还是经验丰富的开发者,都能够进一步提升编程效率和代码质量。
《C++模板元编程技术与应用》是一本深入探讨C++模板元编程的书籍,旨在让更多的C++程序员了解并掌握这一技术,从而在编程过程中提高效率和代码质量。模板元编程是C++中一种强大的静态编译时编程技术,它允许程序员在...
模板练习 ├─Macro1 │ └─res ├─Macro2 ...└─模板学习 ├─初学模板(中1) ├─初学模板(中2) ├─初学模板(中3) ├─深学模板 1 ├─深学模板 2 ├─深学模板 3 ├─深学模板 4 └─深学模板
C++模板是C++编程语言中...通过深入学习这两本书,你将能够熟练地利用C++模板来设计高效、灵活的代码,掌握现代C++编程的核心技能。模板是C++强大功能的关键组成部分,理解和精通模板对于成为高级C++开发人员至关重要。
C++模板元编程是一种在编译时执行计算和创建代码的技术,它利用了C++模板系统的能力,将编程任务从运行时转移到了编译时。模板元编程允许开发者编写更高效、更灵活的代码,特别是在处理类型系统和泛型算法时。在本...
用C++模板方式实现自定义单链表,交流学习用
通过深入学习和理解这些C++模板的知识点,开发者能够编写出更加灵活和高效的代码,适应各种数据类型的需求,提高代码的可维护性和复用性。《C++ Templates:The Complete Guide》这本书无疑是深入探索这个主题的宝贵...
C++模板元编程,很好的学习资料,模板元编程技术与应用_荣耀
《C++模板元编程实战:一个深度学习框架的初步实现》是一本专注于C++模板元编程在实际项目中应用的书籍,尤其是将其应用于构建深度学习框架的实例。模板元编程是C++语言中的一种编译时编程技术,它允许开发者在编译...
C++模板是C++编程语言中的一个重要特性,它允许程序员创建泛型代码,即能够处理多种数据类型的代码。模板在C++中分为两种主要类型:函数模板和类模板。通过使用模板,我们可以编写出更加通用、高效且易于维护的代码...
《C++模板中文版》这本书无疑是学习这一主题的宝贵资源。 模板分为两种主要类型:函数模板和类模板。函数模板让我们能够定义一个可以接受多种类型的通用函数,如`std::swap`。类模板则用于创建可以适用于多种类型的...
C++模板元编程是一种在编译时进行计算和代码生成的技术,它利用C++模板机制的强大功能,将元数据转化为可执行的代码。这一技术在提高程序效率、减少运行时开销、实现类型安全和静态多态等方面具有显著优势。在“C++...
《深入实践C++模板编程》是一本专注于C++标准模板库(STL)的书籍,作者温宇杰通过这本书深入浅出地介绍了C++模板编程的精髓。STL是C++编程中不可或缺的一部分,它提供了高效、可重用的容器、算法和迭代器,极大地提升...