昨天看了reentrantLock的源码码,分析一下:
public class ReentrantLock implements Lock, java.io.Serializable { //调用AbstractQueuedSynchronizer的release方法 public void unlock() { sync.release(1); } //调用FairSync或者NonfairSync的lock方法 public void lock() { sync.lock(); } } //sync抽象类 static abstract class Sync extends AbstractQueuedSynchronizer { //如果当前锁未被占有,那么当前线程占有锁。如果锁被当前线程占有,更新状态 final boolean nonfairTryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { if (compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) // overflow throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; } //如果状态是0,并且当前线程是持有锁的线程//setExclusiveOwnerThread(null); protected final boolean tryRelease(int releases) { int c = getState() - releases; if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); boolean free = false; if (c == 0) { free = true; setExclusiveOwnerThread(null); } setState(c); return free; } } //非公平的sync final static class NonfairSync extends Sync { //锁住当前对象 final void lock() { //如果没有被锁,即state = 0,set state = 1 if (compareAndSetState(0, 1)) //让当前线程占有锁 setExclusiveOwnerThread(Thread.currentThread()); else //调用父类AbstractQueuedSynchronizer的acquire()方法 acquire(1); } protected final boolean tryAcquire(int acquires) { return nonfairTryAcquire(acquires); } } //公平的sync final static class FairSync extends Sync { private static final long serialVersionUID = - 3000897897090466540L; //调用AbstractQueuedSynchronizer中的acquire方法 final void lock() { acquire(1); } /** * Fair version of tryAcquire. Don't grant access unless * recursive call or no waiters or is first. */ protected final boolean tryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { //判断前面是不是已经有线程在申请锁,公平锁需要等待 if (isFirst(current) && compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; } } public abstract class AbstractQueuedSynchronizer{ private static final long stateOffset; static { try { //state成员变量的偏移量 stateOffset = unsafe.objectFieldOffset (AbstractQueuedSynchronizer.class.getDeclaredField("state")); headOffset = unsafe.objectFieldOffset (AbstractQueuedSynchronizer.class.getDeclaredField("head")); tailOffset = unsafe.objectFieldOffset (AbstractQueuedSynchronizer.class.getDeclaredField("tail")); waitStatusOffset = unsafe.objectFieldOffset (Node.class.getDeclaredField("waitStatus")); nextOffset = unsafe.objectFieldOffset (Node.class.getDeclaredField("next")); } catch (Exception ex) { throw new Error(ex); } } //如果变量state的值等于expect,把state设置成update protected final boolean compareAndSetState(int expect, int update) { // See below for intrinsics setup to support this return unsafe.compareAndSwapInt(this, stateOffset, expect, update); } //设置占有锁的线程 protected final void setExclusiveOwnerThread(Thread t) { exclusiveOwnerThread = t; } public final void acquire(int arg) { //调用子类的tryAcquire()方法,如果不能加锁acquireQueued返回true,那样//interrupt当前线程 if (!tryAcquire(arg) && //将当前线程加入等待队列中 acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); } public final boolean release(int arg) { //判定是否可以释放当前的锁 if (tryRelease(arg)) { Node h = head; if (h != null && h.waitStatus != 0) unparkSuccessor(h); return true; } return false; } private void unparkSuccessor(Node node) { /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */ int ws = node.waitStatus; if (ws < 0) compareAndSetWaitStatus(node, ws, 0); /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. * 先查看当前节点的下一个节点是不是有效的,如果有效就直接处理。如果无效就从tail开始往前找。默认情况下是会将先等待的节点,先唤醒 */ Node s = node.next; if (s == null || s.waitStatus > 0) { s = null; for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) s = t; } if (s != null) //调用unsafe.unpark方法,unloke当前线程 LockSupport.unpark(s.thread); } } static final class Node { /** waitStatus value to indicate thread has cancelled */ static final int CANCELLED = 1; /** waitStatus value to indicate successor's thread needs unparking */ static final int SIGNAL = -1; /** waitStatus value to indicate thread is waiting on condition */ static final int CONDITION = -2; /** * waitStatus value to indicate the next acquireShared should * unconditionally propagate */ static final int PROPAGATE = -3; /** Marker to indicate a node is waiting in shared mode */ static final Node SHARED = new Node(); /** Marker to indicate a node is waiting in exclusive mode */ static final Node EXCLUSIVE = null; /** * Status field, taking on only the values: * SIGNAL: The successor of this node is (or will soon be) * blocked (via park), so the current node must * unpark its successor when it releases or * cancels. To avoid races, acquire methods must * first indicate they need a signal, * then retry the atomic acquire, and then, * on failure, block. * CANCELLED: This node is cancelled due to timeout or interrupt. * Nodes never leave this state. In particular, * a thread with cancelled node never again blocks. * CONDITION: This node is currently on a condition queue. * It will not be used as a sync queue node * until transferred, at which time the status * will be set to 0. (Use of this value here has * nothing to do with the other uses of the * field, but simplifies mechanics.) * PROPAGATE: A releaseShared should be propagated to other * nodes. This is set (for head node only) in * doReleaseShared to ensure propagation * continues, even if other operations have * since intervened. * 0: None of the above * * The values are arranged numerically to simplify use. * Non-negative values mean that a node doesn't need to * signal. So, most code doesn't need to check for particular * values, just for sign. * * The field is initialized to 0 for normal sync nodes, and * CONDITION for condition nodes. It is modified only using * CAS. */ volatile int waitStatus; final boolean acquireQueued(final Node node, int arg) { boolean failed = true; try { boolean interrupted = false; for (;;) { final Node p = node.predecessor(); //如果是第一个节点,则尝试去获取锁 if (p == head && tryAcquire(arg)) { setHead(node); p.next = null; // help GC failed = false; return interrupted; } //获取失败,则会被pack if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } } //获取锁,但是当线程被中断的时候,抛出一个InterruptedException,和acquire方法的区别是acquire方法即使被中断也会继续尝试获取锁 public final void acquireInterruptibly(int arg) throws InterruptedException { if (Thread.interrupted()) throw new InterruptedException(); if (!tryAcquire(arg)) doAcquireInterruptibly(arg); } /** * Acquires in exclusive interruptible mode. * @param arg the acquire argument */ private void doAcquireInterruptibly(int arg) throws InterruptedException { final Node node = addWaiter(Node.EXCLUSIVE); boolean failed = true; try { for (;;) { final Node p = node.predecessor(); if (p == head && tryAcquire(arg)) { setHead(node); p.next = null; // help GC failed = false; return; } if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) throw new InterruptedException(); } } finally { if (failed) cancelAcquire(node); } } }
其他参考http://www.iteye.com/topic/623398
思考:unsafe.compareAndSwapInt(this, stateOffset, expect, update);这个方法是线程安全的,有硬件方面的支持
相关推荐
Java并发之ReentrantLock类源码解析 ReentrantLock是Java并发包中的一种同步工具,它可以实现可重入锁的功能。ReentrantLock类的源码分析对理解Java并发机制非常重要。本文将对ReentrantLock类的源码进行详细分析,...
`ReentrantLock`是Java并发编程中的一种高级锁机制,它是`java.util.concurrent.locks`包中的类,提供了比`synchronized`关键字更丰富的功能和更细粒度的控制。相较于`synchronized`,`ReentrantLock`的主要优势在于...
《ReentrantLock源码详解与应用》 ReentrantLock,可重入锁,是Java并发编程中一个重要的锁实现,它提供了比synchronized更高级别的控制能力,包括公平性和非公平性选择。本文将深入探讨ReentrantLock的原理,特别...
Lock、Synchronized 和 ReentrantLock 的使用 Lock、Synchronized 和 ReentrantLock 是 Java 中三种常用的同步机制,每种机制都有其特点和使用场景。下面对这三种机制进行详细的分析和比较。 一、Synchronized ...
Java中的`ReentrantLock`是Java并发包`java.util.concurrent.locks`中的一个高级锁机制,它是可重入的互斥锁,具有与`synchronized`关键字相似的同步性,但提供了更多的灵活性和控制功能。本篇文章将深入探讨`...
《ReentrantLock深度解析》 在Java并发编程中,ReentrantLock是JDK提供的一个可重入互斥锁,它是java.util.concurrent.locks包下的核心类。与synchronized关键字相比,ReentrantLock提供了更高的灵活性,如尝试加锁...
在Java多线程编程中,`ReentrantLock`和`synchronized`都是用于实现线程同步的重要工具,确保在并发环境中数据的一致性和正确性。两者虽然都能实现互斥访问,但在功能、性能以及使用场景上有所不同。下面我们将深入...
java语言 并发编程 ReentrantLock与synchronized区别 详解
### ReentrantLock源码分析 #### 一、ReentrantLock简介 ReentrantLock是一个基于`AbstractQueuedSynchronizer`(AQS)实现的高级锁工具类。与传统的synchronized关键字相比,ReentrantLock提供了更多控制手段,比如...
ReentrantLock的使用及注意事项
在高级并发编程中,`ReentrantLock`是一个强大的工具,相较于内置的`synchronized`关键字,它提供了更多的灵活性和控制。本篇文章将深入探讨`ReentrantLock`的使用以及如何结合Lambda表达式来优化同步代码。 `...
ReentrantLock 实现原理详解 ReentrantLock 是 Java 中的一个同步工具类,它实现了 Lock 接口,提供了锁的获取和释放机制。ReentrantLock 的实现原理基于 AQS(AbstractQueuedSynchronizer),是一个重入锁,允许一...
一张图将整个ReentrantLock流程看懂,干货满满 一张图将整个ReentrantLock流程看懂,干货满满 一张图将整个ReentrantLock流程看懂,干货满满 一张图将整个ReentrantLock流程看懂,干货满满 一张图将整个...
`ReentrantLock`是Java并发编程中非常重要的一种锁,它提供了比`synchronized`关键字更细粒度的控制,并且在高竞争条件下的性能更优。在本文中,我们将深入分析`ReentrantLock`的`lock()`方法,理解其内部机制,包括...
ReentrantLock作为Lock接口的一个实现,是这个框架中的核心组件,尤其值得关注。它的主要特点是可重入性,这意味着一个线程可以多次获取同一锁,从而避免了死锁的风险。 ReentrantLock内部依赖于...
本文将深入探讨Synchronized关键字锁和ReentrantLock锁的异同、功能特性以及它们在实际应用中的适用场景。 首先,Synchronized是一种内置的Java关键字,它提供了简单而强大的线程同步机制。当一个线程进入一个由...
### ReentrantLock 与 synchronized 的比较 #### 一、引言 在Java中,多线程和并发控制一直是程序员关注的重点。随着Java的发展,其语言本身及标准库提供了丰富的工具来帮助开发者处理并发问题。其中,`...
Java中的ReentrantLock是线程安全编程中的一种高级锁机制,它属于Lock接口的一个实现,提供了比synchronized更丰富的功能和更高的灵活性。ReentrantLock的名字来源于它的可重入性,这意味着一个线程可以多次获取同一...
Java的ReentrantLock是Java并发编程中非常重要的一个同步机制,它是JDK 5.0引入的并发包`java.util.concurrent.locks`中的一个高级锁,提供了比synchronized更细粒度的控制,同时具备更高的灵活性和性能。...
Java中的ReentrantLock是Java并发包(java.util.concurrent.locks)中的一个高级锁,它是可重入的,意味着一个线程可以多次获取同一锁。在深入ReentrantLock之前,我们首先需要了解Java并发编程的基础,特别是Java...