`

SQL优化34条

    博客分类:
  • sql
sql 
阅读更多
SQL优化34条
我们要做到不但会写SQL,还要做到写出性能优良的SQL,以下为笔者学习、摘录、并汇总部分资料与大家分享!
(1)      选择最有效率的表名顺序(只在基于规则的优化器中有效):
ORACLE 的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表 driving table)将被最先处理,在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表。如果有3个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指那个被其他表所引用的表.
(2)      WHERE子句中的连接顺序.:
ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前, 那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾.
(3)      SELECT子句中避免使用 ‘ * ‘:
ORACLE在解析的过程中, 会将'*' 依次转换成所有的列名, 这个工作是通过查询数据字典完成的, 这意味着将耗费更多的时间
(4)      减少访问数据库的次数:
ORACLE在内部执行了许多工作: 解析SQL语句, 估算索引的利用率, 绑定变量 , 读数据块等;
(5)      在SQL*Plus , SQL*Forms和Pro*C中重新设置ARRAYSIZE参数, 可以增加每次数据库访问的检索数据量 ,建议值为200
(6)      使用DECODE函数来减少处理时间:
使用DECODE函数可以避免重复扫描相同记录或重复连接相同的表.
(7)      整合简单,无关联的数据库访问:
如果你有几个简单的数据库查询语句,你可以把它们整合到一个查询中(即使它们之间没有关系)
(8)      删除重复记录:
最高效的删除重复记录方法 ( 因为使用了ROWID)例子:
DELETE  FROM  EMP E  WHERE  E.ROWID > (SELECT MIN(X.ROWID)
FROM  EMP X  WHERE  X.EMP_NO = E.EMP_NO);
(9)      用TRUNCATE替代DELETE:
当删除表中的记录时,在通常情况下, 回滚段(rollback segments ) 用来存放可以被恢复的信息. 如果你没有COMMIT事务,ORACLE会将数据恢复到删除之前的状态(准确地说是恢复到执行删除命令之前的状况) 而当运用TRUNCATE时, 回滚段不再存放任何可被恢复的信息.当命令运行后,数据不能被恢复.因此很少的资源被调用,执行时间也会很短. (译者按: TRUNCATE只在删除全表适用,TRUNCATE是DDL不是DML)
(10) 尽量多使用COMMIT:
只要有可能,在程序中尽量多使用COMMIT, 这样程序的性能得到提高,需求也会因为COMMIT所释放的资源而减少:
COMMIT所释放的资源:
a. 回滚段上用于恢复数据的信息.
b. 被程序语句获得的锁
c. redo log buffer 中的空间
d. ORACLE为管理上述3种资源中的内部花费
(11) 用Where子句替换HAVING子句:
避免使用HAVING子句, HAVING 只会在检索出所有记录之后才对结果集进行过滤. 这个处理需要排序,总计等操作. 如果能通过WHERE子句限制记录的数目,那就能减少这方面的开销. (非oracle中)on、where、having这三个都可以加条件的子句中,on是最先执行,where次之,having最后,因为on是先把不 符合条件的记录过滤后才进行统计,它就可以减少中间运算要处理的数据,按理说应该速度是最快的,where也应该比having快点的,因为它过滤数据后 才进行sum,在两个表联接时才用on的,所以在一个表的时候,就剩下where跟having比较了。在这单表查询统计的情况下,如果要过滤的条件没有 涉及到要计算字段,那它们的结果是一样的,只是where可以使用rushmore技术,而having就不能,在速度上后者要慢如果要涉及到计算的字 段,就表示在没计算之前,这个字段的值是不确定的,根据上篇写的工作流程,where的作用时间是在计算之前就完成的,而having就是在计算后才起作 用的,所以在这种情况下,两者的结果会不同。在多表联接查询时,on比where更早起作用。系统首先根据各个表之间的联接条件,把多个表合成一个临时表 后,再由where进行过滤,然后再计算,计算完后再由having进行过滤。由此可见,要想过滤条件起到正确的作用,首先要明白这个条件应该在什么时候 起作用,然后再决定放在那里
(12) 减少对表的查询:
在含有子查询的SQL语句中,要特别注意减少对表的查询.例子:
    SELECT  TAB_NAME FROM TABLES WHERE (TAB_NAME,DB_VER) = ( SELECT
TAB_NAME,DB_VER FROM  TAB_COLUMNS  WHERE  VERSION = 604)
(13) 通过内部函数提高SQL效率.:
复杂的SQL往往牺牲了执行效率. 能够掌握上面的运用函数解决问题的方法在实际工作中是非常有意义的
(14) 使用表的别名(Alias):
当在SQL语句中连接多个表时, 请使用表的别名并把别名前缀于每个Column上.这样一来,就可以减少解析的时间并减少那些由Column歧义引起的语法错误.
(15) 用EXISTS替代IN、用NOT EXISTS替代NOT IN:
在许多基于基础表的查询中,为了满足一个条件,往往需要对另一个表进行联接.在这种情况下, 使用EXISTS(或NOT EXISTS)通常将提高查询的效率. 在子查询中,NOT IN子句将执行一个内部的排序和合并. 无论在哪种情况下,NOT IN都是最低效的 (因为它对子查询中的表执行了一个全表遍历). 为了避免使用NOT IN ,我们可以把它改写成外连接(Outer Joins)或NOT EXISTS.
例子:
(高效)SELECT * FROM  EMP (基础表)  WHERE  EMPNO > 0  AND  EXISTS (SELECT ‘X'  FROM DEPT  WHERE  DEPT.DEPTNO = EMP.DEPTNO  AND  LOC = ‘MELB')
(低效)SELECT  * FROM  EMP (基础表)  WHERE  EMPNO > 0  AND  DEPTNO IN(SELECT DEPTNO  FROM  DEPT  WHERE  LOC = ‘MELB')
(16) 识别'低效执行'的SQL语句:
虽然目前各种关于SQL优化的图形化工具层出不穷,但是写出自己的SQL工具来解决问题始终是一个最好的方法:
SELECT  EXECUTIONS , DISK_READS, BUFFER_GETS,
ROUND((BUFFER_GETS-DISK_READS)/BUFFER_GETS,2) Hit_radio,
ROUND(DISK_READS/EXECUTIONS,2) Reads_per_run,
SQL_TEXT
FROM  V$SQLAREA
WHERE  EXECUTIONS>0
AND  BUFFER_GETS > 0
AND  (BUFFER_GETS-DISK_READS)/BUFFER_GETS < 0.8
ORDER BY  4 DESC;
(17) 用索引提高效率:
索引是表的一个概念部分,用来提高检索数据的效率,ORACLE使用了一个复杂的自平衡B-tree结构. 通常,通过索引查询数据比全表扫描要快. 当ORACLE找出执行查询和Update语句的最佳路径时, ORACLE优化器将使用索引. 同样在联结多个表时使用索引也可以提高效率. 另一个使用索引的好处是,它提供了主键(primary key)的唯一性验证.。那些LONG或LONG RAW数据类型, 你可以索引几乎所有的列. 通常, 在大型表中使用索引特别有效. 当然,你也会发现, 在扫描小表时,使用索引同样能提高效率. 虽然使用索引能得到查询效率的提高,但是我们也必须注意到它的代价. 索引需要空间来存储,也需要定期维护, 每当有记录在表中增减或索引列被修改时, 索引本身也会被修改. 这意味着每条记录的INSERT , DELETE , UPDATE将为此多付出4 , 5 次的磁盘I/O . 因为索引需要额外的存储空间和处理,那些不必要的索引反而会使查询反应时间变慢.。定期的重构索引是有必要的.:
ALTER  INDEX <INDEXNAME> REBUILD <TABLESPACENAME>
18) 用EXISTS替换DISTINCT:
当提交一个包含一对多表信息(比如部门表和雇员表)的查询时,避免在SELECT子句中使用DISTINCT. 一般可以考虑用EXIST替换, EXISTS 使查询更为迅速,因为RDBMS核心模块将在子查询的条件一旦满足后,立刻返回结果. 例子:
      (低效):
SELECT  DISTINCT  DEPT_NO,DEPT_NAME  FROM  DEPT D , EMP E
WHERE  D.DEPT_NO = E.DEPT_NO
(高效):
SELECT  DEPT_NO,DEPT_NAME  FROM  DEPT D  WHERE  EXISTS ( SELECT ‘X'
FROM  EMP E  WHERE E.DEPT_NO = D.DEPT_NO);
(19) sql语句用大写的;因为oracle总是先解析sql语句,把小写的字母转换成大写的再执行
(20) 在java代码中尽量少用连接符“+”连接字符串!
(21) 避免在索引列上使用NOT 通常, 
我们要避免在索引列上使用NOT, NOT会产生在和在索引列上使用函数相同的影响. 当ORACLE”遇到”NOT,他就会停止使用索引转而执行全表扫描.
(22) 避免在索引列上使用计算.
WHERE子句中,如果索引列是函数的一部分.优化器将不使用索引而使用全表扫描.
举例:
低效:
SELECT … FROM  DEPT  WHERE SAL * 12 > 25000;
高效:
SELECT … FROM DEPT WHERE SAL > 25000/12;
(23) 用>=替代>
高效:
SELECT * FROM  EMP  WHERE  DEPTNO >=4
低效:
SELECT * FROM EMP WHERE DEPTNO >3
两者的区别在于, 前者DBMS将直接跳到第一个DEPT等于4的记录而后者将首先定位到DEPTNO=3的记录并且向前扫描到第一个DEPT大于3的记录.
(24) 用UNION替换OR (适用于索引列)
通常情况下, 用UNION替换WHERE子句中的OR将会起到较好的效果. 对索引列使用OR将造成全表扫描. 注意, 以上规则只针对多个索引列有效. 如果有column没有被索引, 查询效率可能会因为你没有选择OR而降低. 在下面的例子中, LOC_ID 和REGION上都建有索引.
高效:
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE LOC_ID = 10
UNION
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE REGION = “MELBOURNE”
低效:
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE LOC_ID = 10 OR REGION = “MELBOURNE”
如果你坚持要用OR, 那就需要返回记录最少的索引列写在最前面.
(25) 用IN来替换OR 
这是一条简单易记的规则,但是实际的执行效果还须检验,在ORACLE8i下,两者的执行路径似乎是相同的. 
低效:
SELECT…. FROM LOCATION WHERE LOC_ID = 10 OR LOC_ID = 20 OR LOC_ID = 30
高效
SELECT… FROM LOCATION WHERE LOC_IN  IN (10,20,30);
(26) 避免在索引列上使用IS NULL和IS NOT NULL
避免在索引中使用任何可以为空的列,ORACLE将无法使用该索引.对于单列索引,如果列包含空值,索引中将不存在此记录. 对于复合索引,如果每个列都为空,索引中同样不存在此记录. 如果至少有一个列不为空,则记录存在于索引中.举例: 如果唯一性索引建立在表的A列和B列上, 并且表中存在一条记录的A,B值为(123,null) , ORACLE将不接受下一条具有相同A,B值(123,null)的记录(插入). 然而如果所有的索引列都为空,ORACLE将认为整个键值为空而空不等于空. 因此你可以插入1000 条具有相同键值的记录,当然它们都是空! 因为空值不存在于索引列中,所以WHERE子句中对索引列进行空值比较将使ORACLE停用该索引.
低效: (索引失效)
SELECT … FROM  DEPARTMENT  WHERE  DEPT_CODE IS NOT NULL;
高效: (索引有效)
SELECT … FROM  DEPARTMENT  WHERE  DEPT_CODE >=0;
(27) 总是使用索引的第一个列:
如果索引是建立在多个列上, 只有在它的第一个列(leading column)被where子句引用时,优化器才会选择使用该索引. 这也是一条简单而重要的规则,当仅引用索引的第二个列时,优化器使用了全表扫描而忽略了索引
28) 用UNION-ALL 替换UNION ( 如果有可能的话):
当SQL 语句需要UNION两个查询结果集合时,这两个结果集合会以UNION-ALL的方式被合并, 然后在输出最终结果前进行排序. 如果用UNION ALL替代UNION, 这样排序就不是必要了. 效率就会因此得到提高. 需要注意的是,UNION ALL 将重复输出两个结果集合中相同记录. 因此各位还是要从业务需求分析使用UNION ALL的可行性. UNION 将对结果集合排序,这个操作会使用到SORT_AREA_SIZE这块内存. 对于这块内存的优化也是相当重要的. 下面的SQL可以用来查询排序的消耗量
低效:
SELECT  ACCT_NUM, BALANCE_AMT
FROM  DEBIT_TRANSACTIONS
WHERE TRAN_DATE = '31-DEC-95'
UNION
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = '31-DEC-95'
高效:
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = '31-DEC-95'
UNION ALL
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = '31-DEC-95'
(29) 用WHERE替代ORDER BY:
ORDER BY 子句只在两种严格的条件下使用索引.
ORDER BY中所有的列必须包含在相同的索引中并保持在索引中的排列顺序.
ORDER BY中所有的列必须定义为非空.
WHERE子句使用的索引和ORDER BY子句中所使用的索引不能并列.
例如:
表DEPT包含以下列:
DEPT_CODE PK NOT NULL
DEPT_DESC NOT NULL
DEPT_TYPE NULL
低效: (索引不被使用)
SELECT DEPT_CODE FROM  DEPT  ORDER BY  DEPT_TYPE
高效: (使用索引)
SELECT DEPT_CODE  FROM  DEPT  WHERE  DEPT_TYPE > 0
(30) 避免改变索引列的类型.:
当比较不同数据类型的数据时, ORACLE自动对列进行简单的类型转换.
假设 EMPNO是一个数值类型的索引列.
SELECT …  FROM EMP  WHERE  EMPNO = ‘123'
实际上,经过ORACLE类型转换, 语句转化为:
SELECT …  FROM EMP  WHERE  EMPNO = TO_NUMBER(‘123')
幸运的是,类型转换没有发生在索引列上,索引的用途没有被改变.
现在,假设EMP_TYPE是一个字符类型的索引列.
SELECT …  FROM EMP  WHERE EMP_TYPE = 123
这个语句被ORACLE转换为:
SELECT …  FROM EMP  WHERETO_NUMBER(EMP_TYPE)=123
因为内部发生的类型转换, 这个索引将不会被用到! 为了避免ORACLE对你的SQL进行隐式的类型转换, 最好把类型转换用显式表现出来. 注意当字符和数值比较时, ORACLE会优先转换数值类型到字符类型
(31) 需要当心的WHERE子句:
某些SELECT 语句中的WHERE子句不使用索引. 这里有一些例子.
在下面的例子里, (1)‘!=' 将不使用索引. 记住, 索引只能告诉你什么存在于表中, 而不能告诉你什么不存在于表中. (2) ‘||'是字符连接函数. 就象其他函数那样, 停用了索引. (3) ‘+'是数学函数. 就象其他数学函数那样, 停用了索引. (4)相同的索引列不能互相比较,这将会启用全表扫描.
(32) a. 如果检索数据量超过30%的表中记录数.使用索引将没有显著的效率提高.
b. 在特定情况下, 使用索引也许会比全表扫描慢, 但这是同一个数量级上的区别. 而通常情况下,使用索引比全表扫描要块几倍乃至几千倍!
(33) 避免使用耗费资源的操作:
带有DISTINCT,UNION,MINUS,INTERSECT,ORDER BY的SQL语句会启动SQL引擎
执行耗费资源的排序(SORT)功能. DISTINCT需要一次排序操作, 而其他的至少需要执行两次排序. 通常, 带有UNION, MINUS , INTERSECT的SQL语句都可以用其他方式重写. 如果你的数据库的SORT_AREA_SIZE调配得好, 使用UNION , MINUS, INTERSECT也是可以考虑的, 毕竟它们的可读性很强
(34) 优化GROUP BY:
提高GROUP BY 语句的效率, 可以通过将不需要的记录在GROUP BY 之前过滤掉.下面两个查询返回相同结果但第二个明显就快了许多.
低效:
SELECT JOB , AVG(SAL)
FROM EMP
GROUP by JOB
HAVING JOB = ‘PRESIDENT'
OR JOB = ‘MANAGER'
高效:
SELECT JOB , AVG(SAL)
FROM EMP
WHERE JOB = ‘PRESIDENT'
OR JOB = ‘MANAGER'
GROUP by JOB

分享到:
评论

相关推荐

    信捷PLC应用实例解析:随机密码、动态验证码与分期付款锁机系统的实现

    内容概要:本文详细介绍了信捷PLC在多个应用场景中的具体实现,包括随机密码生成、动态验证码、动态分期付款功能及锁机例程。首先探讨了随机密码生成,通过PLC的随机数生成功能并结合数学运算,实现了4位随机密码。其次,讲解了动态验证码的实现,利用PLC的实时时钟和通信功能,使验证码随时间动态变化。再次,介绍了动态分期付款功能,通过监测支付信号和比较已支付金额与总金额,实现分期付款的控制。最后,讨论了锁机例程,通过状态继电器和时间窗控制,确保设备在特定条件下不被随意使用。每个部分都提供了详细的梯形图代码和注释,帮助读者理解和实现。 适合人群:对PLC编程有一定基础的技术人员,尤其是从事工业自动化领域的工程师。 使用场景及目标:适用于需要增强设备安全性、提高验证机制可靠性的工业控制系统。通过学习这些例程,工程师可以在实际项目中灵活运用PLC实现复杂的功能,如设备访问控制、支付管理等。 其他说明:文中不仅提供了具体的代码实现,还分享了一些实用技巧和注意事项,如密码比对策略、时间同步校验、多品牌PLC移植建议等。此外,还提到了一些防破解措施,增强了系统的安全性。

    213000-fbo-ggs-Linux-x64-Oracle-shiphome.zipogg21.3安装包,适用于经典架构

    213000-fbo-ggs-Linux-x64-Oracle-shiphome.zip ogg21.3安装包,适用于经典架构

    基于Stanley算法与预瞄距离自适应的CarSim与Simulink联合仿真模型及其应用

    内容概要:本文介绍了基于Stanley算法和预瞄距离自适应机制的CarSim与Simulink联合仿真模型。Stanley算法用于路径跟踪,通过计算横向和航向偏差调整车辆转向角;预瞄距离自适应机制根据车辆速度动态调整预瞄距离,确保在不同速度和路况下都能灵活应对。CarSim提供高精度车辆动力学模型,Simulink则负责算法实现和系统集成。文中还分享了多个实用技巧,如速度单位转换、PID控制器参数调整、数据同步问题解决等,并提供了完整的模型文件供下载。 适合人群:从事自动驾驶研究的技术人员、高校师生及相关领域的研究人员。 使用场景及目标:适用于自动驾驶路径跟踪的研究与开发,旨在提高车辆在不同速度和路况下的路径跟踪性能,减少横向误差,增强行驶稳定性。 其他说明:文中提到的模型文件包括Carsim参数配置文件cpar、Simulink模型文件及详细参考资料,有助于快速搭建并调试联合仿真环境。

    西门子S7-1200 PLC在污水处理项目中的Modbus通讯与PID控制应用详解

    内容概要:本文详细介绍了西门子S7-1200 PLC在污水处理项目中的应用,涵盖多个关键技术模块。首先讨论了模拟量转换,通过具体的代码示例展示了如何将模拟量信号转换为可用于控制的数值。接下来探讨了电动阀控制,解释了如何利用逻辑指令实现电动阀的开关控制。液位控制部分则通过比较指令实现了液位的精准调控。Modbus通讯部分讲解了如何通过Modbus协议控制变频器,包括通讯参数的配置和数据传输的具体实现。PID控制部分详细解析了PID控制器的参数设置及其在污水处理中的应用。最后,PUT与 GET指令的应用确保了主站与从站之间的数据同步。此外,文中还分享了一些实战经验和调试技巧,如模拟量处理的基本方法、Modbus通讯的注意事项以及PID控制的实际应用。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是对PLC编程和污水处理控制系统感兴趣的读者。 使用场景及目标:①帮助工程师理解和掌握西门子S7-1200 PLC在污水处理项目中的具体应用;②提供详细的代码示例和实战经验,便于读者快速上手并应用于实际项目;③解决常见问题,提高系统的稳定性和可靠性。 其他说明:文中不仅涵盖了理论知识,还包括大量的实战经验和调试技巧,有助于读者更好地应对实际项目中的挑战。

    【A股温度计】www.agwdj.com 镜像版程序V1.0

    【A股温度计】www.agwdj.com 镜像版程序V1.0说明 •通过数据可视化技术,将复杂的A股市场数据转化为直观的图形界面,帮助投资者快速把握市场脉搏。 【核心功能】 •全景视角:突破信息碎片化局限,快速定位涨跌分布,一眼锁定今日热点板块 •板块排序:基于申万行业分类标准,对31个一级行业和131个二级行业实时动态排序 •硬件适配:智能适配不同分辨率屏幕,4K以上屏幕显示信息更多(视觉更佳) •智能缩放:A股全图让大A市场5000+个股同屏显示(支持鼠标滚轮及触摸设备5级缩放) 【三秒原则】 •三秒看懂:通过精心设计的视觉图形,让用户在三秒内看清市场整体状况 •三秒定位:智能算法让大成交额个股和热点板块自动靠前,快速定位机会 •三秒操作:极简的界面,让用户减少操作 【使用场景】 •盘前准备:快速了解隔夜市场变化,制定当日策略 •盘中监控:实时跟踪市场动向,及时把握当日机会 •盘后复盘:全面分析当日市场表现,总结经验教训 【适合人群】 •个人用户:快速了解市场整体趋势变化,辅助决策 •专业人员:获取每天市场的数据云图支持研究工作 •金融机构:作为投研系统的可视化补充组件 •财经媒体:制作专业市场分析图表和报道 【市场切换】 •默认加载"A股全图",可切换单独显示的类型如下: •上证A股/深证A股/北证A股/创业板/科创板/ST板块/可转债/ETF 【程序优势】 •运行环境:纯PHP运行(无需安装任何数据库) •数据更新:实时同步→A股温度计→www.agwdj.com •显示优化:自动适配8K/4K/2K/1080P等不同分辨率的屏幕 •设备兼容:对市面上主流的设备及浏览器做了适配(检测到手机/平板/电视等默认Chrome/Firefox/Edge内核过低的情况会自动提示) 【其他说明】 •A股温度计程序演示网址:https://www.agwdj.com

    汽车车载网络系统检修.ppt

    汽车车载网络系统检修.ppt

    【KUKA 机器人资料】:KUKA 机器人初级培训教材.pdf

    KUKA机器人相关文档

    基于Matlab的模拟退火算法在旅行商问题(TSP)优化中的应用及其实现

    内容概要:本文详细介绍了利用Matlab实现模拟退火算法来优化旅行商问题(TSP)。首先阐述了TSP的基本概念及其在路径规划、物流配送等领域的重要性和挑战。接着深入讲解了模拟退火算法的工作原理,包括高温状态下随机探索、逐步降温过程中选择较优解或以一定概率接受较差解的过程。随后展示了具体的Matlab代码实现步骤,涵盖城市坐标的定义、路径长度的计算方法、模拟退火主循环的设计等方面。并通过多个实例演示了不同参数配置下的优化效果,强调了参数调优的重要性。最后讨论了该算法的实际应用场景,如物流配送路线优化,并提供了实用技巧和注意事项。 适合人群:对路径规划、物流配送优化感兴趣的科研人员、工程师及高校学生。 使用场景及目标:适用于需要解决复杂路径规划问题的场合,特别是涉及多个节点间最优路径选择的情况。通过本算法可以有效地减少路径长度,提高配送效率,降低成本。 其他说明:文中不仅给出了完整的Matlab代码,还包括了一些优化建议和技术细节,帮助读者更好地理解和应用这一算法。此外,还提到了一些常见的陷阱和解决方案,有助于初学者避开常见错误。

    BYVIN电动四轮车控制器代码详解:STM32F4硬件与软件设计

    内容概要:本文详细介绍了BYVIN(比德文)电动四轮车控制器的技术细节,涵盖了硬件设计和软件实现两大部分。硬件方面,提供了PCB文件和PDF原理图,展示了电路板布局、元件位置及电路连接关系。软件方面,代码结构清晰,模块化设计良好,包括初始化、速度数据处理、PWM配置、故障保护机制等功能模块。文中还提到了一些独特的设计细节,如PWM死区补偿、故障分级处理、卡尔曼滤波估算电池电量等。此外,代码仓库中还包括了详细的注释和调试技巧,如CAN总线实时数据传输、硬件级关断+软件状态机联动等。 适合人群:具备一定嵌入式开发基础的研发人员,尤其是对STM32F4系列单片机和电动车辆控制系统感兴趣的工程师。 使用场景及目标:适用于希望深入了解电动四轮车控制器设计原理和技术实现的研究人员和开发者。目标是掌握电动四轮车控制器的硬件设计方法和软件编程技巧,提升实际项目开发能力。 其他说明:本文不仅提供了代码和技术细节,还分享了许多实战经验和设计思路,有助于读者更好地理解和应用这些技术。

    【剧本杀AI提示词指令】基于AI的剧本杀定制化创作系统(deepseek,豆包,kimi,chatGPT,扣子空间,manus,AI训练师)

    内容概要:本文介绍了一个专业的剧本杀创作作家AI。它能根据客户需求创作各种风格和难度的剧本杀剧本,并提供创作建议和修改意见。其目标是创造引人入胜、逻辑严密的剧本体验。它的工作流程包括接收理解剧本要求、创作剧本框架情节、设计角色背景线索任务剧情走向、提供修改完善建议、确保剧本可玩性和故事连贯性。它需保证剧本原创、符合道德法律标准并在规定时间内完成创作。它具备剧本创作技巧、角色构建理解、线索悬念编织、文学知识和创意思维、不同文化背景下剧本风格掌握以及剧本杀游戏机制和玩家心理熟悉等技能。; 适合人群:有剧本杀创作需求的人群,如剧本杀爱好者、创作者等。; 使用场景及目标:①为用户提供符合要求的剧本杀剧本创作服务;②帮助用户完善剧本杀剧本,提高剧本质量。; 阅读建议:此资源详细介绍了剧本杀创作作家AI的功能和服务流程,用户可以依据自身需求与该AI合作,明确表达自己的创作需求并配合其工作流程。

    空气耦合超声仿真的COMSOL模型解析与应用实例

    内容概要:本文详细介绍了五个用于空气耦合超声仿真的COMSOL模型,涵盖二维和三维场景,适用于铝板和钢板的多种缺陷检测。每个模型都包含了具体的参数设置、边界条件选择以及优化技巧。例如,Lamb波检测模型展示了如何利用A0模态检测铝板内的气泡,而三维模型则强调了内存管理和入射角参数化扫描的重要性。表面波检测模型提供了裂纹识别的相关性分析方法,变厚度模型则展示了如何通过几何参数化来模拟复杂的工件形态。文中还分享了许多实用的操作技巧,如内存优化、信号处理和自动化检测逻辑。 适用人群:从事无损检测研究的技术人员、COMSOL软件使用者、超声检测领域的研究人员。 使用场景及目标:①帮助用户理解和掌握空气耦合超声仿真的具体实现方法;②提供实际工程应用中的缺陷检测解决方案;③指导用户进行高效的仿真建模和结果分析。 其他说明:文中提供的模型不仅涵盖了常见的缺陷检测场景,还包括了一些高级技巧,如参数化扫描、自动化检测逻辑等,能够显著提高工作效率。同时,文中还给出了硬件配置建议和一些常见的注意事项,确保用户可以顺利运行这些模型。

    【精通各种销售文案的专家】AI提示词销售文案自动生成系统:文案创作与优化全流程解析

    内容概要:本文档介绍了名为“精通各种销售文案的专家”的虚拟角色,该角色由深度学习和自然语言处理技术构建,旨在为各行业提供专业的销售文案服务。文档详细列出了角色的背景、偏好、目标、限制条件以及技能。它强调了角色在文案创意撰写、精准市场定位、效果优化和培训指导方面的能力,并且提到它能够根据不同的产品特性创作多元化的文案风格,同时确保文案符合法律规范、品牌形象一致性和时效性。此外,还展示了具体的文案示例,如智能手表和空气净化器的广告语,最后概述了与用户合作的标准流程,包括初步沟通、文案构思、初稿撰写及反馈修订等步骤。; 适合人群:需要撰写或优化销售文案的企业营销人员、广告策划师以及想要提高文案写作水平的内容创作者。; 使用场景及目标:①为企业或个人提供定制化销售文案服务,以提升品牌影响力和销售业绩;②帮助文案撰写者掌握文案策划技巧,提高文案质量;③确保文案符合法律法规和品牌要求,维护品牌形象。; 阅读建议:阅读时应重点关注角色的核心能力和所提供的具体服务,同时注意文档中提及的文案创作原则和流程,以便更好地理解如何利用该角色来满足自身的文案需求。

    【KUKA 机器人资料】:kuka Robot 初级培训.pdf

    KUKA机器人相关文档

    多智能体系统中神经网络与自适应动态滑模控制的Simulink复现及优化

    内容概要:本文详细探讨了多智能体系统中神经网络与自适应动态滑模控制的应用及其在Simulink中的复现。首先介绍了多智能体系统的概念及其通信方式,然后讨论了神经网络在多智能体决策中的应用,展示了如何使用Keras构建前馈神经网络。接着阐述了自适应动态滑模控制的基本原理,包括滑模面设计和自适应控制参数调整。最后,重点讲解了如何在Simulink中集成这些技术,提供了具体的实现步骤和优化建议,如使用Matlab Function模块嵌入神经网络和自适应滑模控制算法,以及解决抖振问题的方法。 适合人群:从事智能控制系统研究和开发的技术人员,尤其是对多智能体系统、神经网络和自适应动态滑模控制感兴趣的科研人员和工程师。 使用场景及目标:适用于需要提高多智能体系统在复杂环境下稳定性和效率的研究项目。具体目标包括减少控制系统的抖振现象,提升响应速度和精度,降低计算资源消耗。 其他说明:文中提供的代码片段和实现细节有助于读者快速理解和应用这些先进技术。同时,强调了在实际工程中需要注意的问题,如采样时间和代数环检测等。

    永磁同步电机无传感器控制:基于改进卡尔曼滤波速度观测器的Simulink建模与应用

    内容概要:本文详细探讨了永磁同步电机(PMSM)无传感器控制领域的改进卡尔曼滤波速度观测器的应用。首先介绍了卡尔曼滤波的基本原理及其在PMSM速度观测中的应用,指出了传统卡尔曼滤波在复杂非线性系统中的局限性。接着阐述了改进卡尔曼滤波的具体方法,包括自适应调整过程噪声协方差矩阵Q和观测噪声协方差矩阵R,以应对PMSM运行时参数变化的情况。文中还展示了如何在Simulink中构建PMSM的数学模型并实现普通和改进卡尔曼滤波的子模块,通过仿真对比验证了改进算法的有效性和优越性。此外,讨论了改进版在不同工况下的表现,尤其是在高速区和负载突变情况下的精度提升。 适合人群:从事电机控制系统研究与开发的技术人员,尤其是对卡尔曼滤波有一定了解并希望深入了解其在PMSM无传感器控制中应用的人群。 使用场景及目标:适用于需要提高PMSM无传感器控制精度的研发项目,目标是通过改进卡尔曼滤波算法,实现更精准的速度和位置估计,降低系统成本并提高可靠性。 其他说明:文章强调了改进卡尔曼滤波在实际应用中的细节处理,如自适应调整噪声协方差矩阵、优化矩阵运算等,为后续研究提供了宝贵的实践经验和技术指导。

    游戏型多媒体教育软件.ppt

    游戏型多媒体教育软件.ppt

    【KUKA 机器人资料】:KUKA Unternehmenspr_sentation.pdf

    KUKA机器人相关文档

    电力电子领域三相MMC整流器的控制策略与MATLAB实现详解

    内容概要:本文深入探讨了三相模块化多电平变换器(MMC)整流器的控制策略及其MATLAB实现。首先介绍了双闭环控制机制,包括电流外环和电压内环的作用及其Python代码示例。接着详细讲解了桥臂电压均衡控制、模块电压均衡控制以及环流抑制控制的具体方法和技术细节。此外,还讨论了载波移相调制的应用,展示了如何通过MATLAB生成移相载波信号。文中提供了大量MATLAB代码片段,帮助读者更好地理解和实现这些控制策略。 适合人群:从事电力电子领域的研究人员、工程师以及相关专业的学生。 使用场景及目标:适用于需要深入了解MMC整流器控制策略的研究和开发项目。目标是掌握MMC整流器的工作原理、控制方法及其具体实现,从而应用于实际工程项目中。 其他说明:文章强调了实际工程应用中的注意事项,如调参技巧、波形质量优化等,并提醒读者仿真结果与实际情况可能存在差异,需预留一定的调节空间。

    西门子S7-200SMART PLC与ABB变频器在一拖二恒压供水系统中的应用及优化

    内容概要:本文详细介绍了基于西门子S7-200SMART PLC和ABB变频器的一拖二恒压供水系统的具体实现方法和技术要点。主要内容涵盖RS485通讯配置、PID调节、PLC程序逻辑(如压力判断、倒泵触发)、变频器参数设置以及HMI界面设计等方面。文中不仅提供了详细的代码片段,还分享了许多实际调试中的经验和常见问题解决方案,如通讯配置、定时切换策略、压力波动处理等。 适合人群:从事自动化控制系统设计、安装和维护的技术人员,尤其是对PLC编程和变频器应用有一定基础的工程师。 使用场景及目标:适用于工业现场的恒压供水系统设计与实施,旨在提高系统的稳定性和可靠性,减少设备磨损,确保供水压力的精确控制。通过学习本文,读者能够掌握PLC与变频器协同工作的关键技术,提升实际项目中的问题解决能力。 其他说明:文章强调了在实际项目中应注意的细节,如通讯配置、参数调整、硬件连接等,并提供了一些实用的小技巧,帮助读者更好地理解和应用相关技术。

    ERP主数据与业务数据关系

    ERP主数据与业务数据关系 PPT

Global site tag (gtag.js) - Google Analytics