和内存释放(主要是GC)有关的话题。
★JVM的内存?
在Java虚拟机规范中(具体章节请看“这里 ”),提及了如下几种类型的内存空间:
◇栈内存(Stack):每个线程私有的。
◇堆内存(Heap):所有线程公用的。
◇方法区(Method Area):有点像以前常说的“进程代码段”,这里面存放了每个加载类的反射信息、类函数的代码、编译时常量等信息。
◇原生方法栈(Native Method Stack):主要用于JNI中的原生代码,平时很少涉及。
?
★垃圾回收机制简介?
其实Java虚拟机规范中并未规定垃圾回收的相关细节。垃圾回收具体该怎么搞,完全取决于各个JVM的设计者。所以,不同的JVM之间,GC的行为可能会有一定的差异。下面咱拿SUN官方的JVM来简单介绍 一下GC的机制。
◇啥时候进行垃圾回收?
一般情况下,当JVM发现堆内存比较紧张、不太够用时,它就会着手进行垃圾回收工作。但是大伙儿要认清这样一个残酷的事实:JVM进行GC的时间点是无法精确预知的。因为GC启动的时刻会受到各种运行环境因素的影响,随机性太大。
虽说咱们无法精确预知,但假如你想知道每次垃圾回收执行的情况,还是蛮方便的。可以通过JVM的命令行参数“-XX:+PrintGC”把相关信息打印出来。
另外,调用System.gc()只是建议JVM进行GC。至于JVM到底会不会做,那就不好说啦。通常不建议自己手动调用System.gc(),还 是让JVM自行决定比较好。另外,使用JVM命令行参数“-XX:+DisableExplicitGC”可以让System.gc()不起作用。
◇谁来负责垃圾回收?
一般情况下,JVM会有一个或多个专门的垃圾回收线程,由它们负责清理回收垃圾内存。
◇如何发现垃圾对象?
垃圾回收线程会从“根集(Root Set)”开始进行对象引用的遍历。所谓的“根集”,就是正在运行的线程中,可以访问的引用变量 的 集合(比如所有线程当前函数的参数和局部变量、当前类的成员变量等等)。垃圾回收线程先找出被根集直接引用的所有对象(不妨叫集合1),然后再找出被集合 1直接引用的所有对象(不妨叫集合2),然后再找出被集合2直接引用的所有对象......如此循环往复,直到把能遍历到的对象都遍历完。
凡是从根集通过上述遍历可以到达的对象,都称为可达对象或有效对象;反之,则是不可达对象或失效对象(也就是垃圾)。
◇如何清理/回收垃圾?
通过上述阶段,就把垃圾对象都找出来。然后垃圾回收线程会进行相应的清理和回收工作,包括:把垃圾内存重新变为可用内存、进行内存的整理以消除内存碎片、等等。这个过程会涉及到若干算法,有爱好的同学可以参见“这里 ”。限于篇幅,咱就不深入聊了。
◇分代
早期的JVM是不采用分代技术的,所有被GC管理的对象都存放在同一个堆里面。这么做的缺点比较明显:每次进行GC都要遍历所有对象,开销很大。其实大 部分的对象生命周期都很短(短命对象),只有少数对象比较长寿;在这些短命对象中,又只有少数对象占用的内存空间大;其它大量的短命对象都属于小对象(很 符合二八原理 )。
有鉴于此,从JDK 1.2之后,JVM开始使用分代的垃圾回收(Generational Garbage Collection)。JVM把GC相关的内存分为年老代(Tenured)和年轻代(Nursery)、持久代(Permanent,对应于JVM规 范的方法区)。大部分 对象在刚创建时,都位于年轻代。假如某对象经历了几轮GC还活着(大龄对象),就把它移到年老代。另外,假如某个对象在创建时比较大,可能就直接被丢到年老代。经过这种策略,使得年轻代总是保存那些短命的小对象。在空间尺寸上,年轻代相对较小,而年老代相对较大。
因为有了分代技术,JVM的GC也相应分为两种:主要收集(Major Collection)和次要收集(Minor Collection)。主要收集同时清理年老代和年轻代,因此开销很大,不常进行;次要收集仅仅清理年轻代,开销很小,经常进行。
?
★GC对性能会有啥影响??
刚才介绍了GC的大致原理,那GC对性能会造成哪些影响捏?主要有如下几个方面:
◇造成当前运行线程的停顿
早期的GC比较弱智。在它工作期间,所有其它的线程都被暂停(以免影响垃圾回收工作)。等到GC干完活,其它线程再继续运行。所以,早期JDK的GC一旦开始工作,整个程序就会陷入假死状态,失去各种响应。
经过这些年的技术改进(包括采用分代技术),从JDK 1.4开始,GC已经比较精明了。在它干活期间,只是偶然暂停一下其它线程的运行(从长时间假死变为暂时性休克)。
◇遍历对象引用的开销
试想假如JVM中的对象很多,那遍历完所有可达对象肯定是比较费劲的工作,这个开销可不小。
◇清理和回收垃圾的开销
遍历完对象引用之后,对垃圾的清理和回收也有较大的开销。这部分开销可能包括复制内存块、更新对象引用等等。
?
★几种收集器?
◇两个性能指标
因为今天聊的是性能的话题,必然会提到衡量GC性能的两个重要指标:吞吐量(Throughput)和停顿时间(Pause Time)。吞吐量这个词不是很直观,解释一下:就是JVM不用于 GC的时间占总时间的比率。吞吐量是越大越好,停顿时间是越小越好。
不同的应用程序对这两个指标的关注点不一样(后面具体会说),也就是所谓的“众口难调”。很多JVM厂商为了迎合“众口”,不得不提供多种几种垃圾收集器供使用者选择。不同的收集器,采用的收集策略是不一样的,下面具体介绍。
◇串行收集器(Serial Collector)
使用命令行选项“-XX:+UseSerialGC”指定。
这种收集器是最传统的收集器。它使用单线程进行垃圾回收,对于单CPU机器比较合适。另外,小型应用或者对上述两个指标没有非凡要求的,可以使用串行收集器。
◇并行收集器(Parallel Throughput Collector)
顾名思义,这种收集器使用多个线程进行垃圾回收以达到高吞吐量。垃圾回收线程的数量通过命令行选项“-XX:ParallelGCThreads=n”指定。可以设置该数值以便充分利用多CPU/多核。
当使用命令行选项“-XX:+UseParallelGC”时:它会针对年轻代使用多个垃圾回收线程,对年老代依然使用单个线程的串行方式。此选项最早在JDK 1.5引入。
当使用命令行选项“-XX:+UseParallelOldGC”时:它针对年轻代和年老代都使用多个垃圾回收线程的方式。不过此选项从JDK 1.6才开始引入。
◇并发收集器(Concurrent Low Pause Collector)
使用命令行选项“-XX:+UseConcMarkSweepGC”指定。
这种收集器优先保证程序的响应。它会尽量让垃圾回收线程和应用自身的线程同时运行,从而降低停顿时间。此选项从JDK 1.4.1开始支持。
◇增量收集器(Incremental Collector)
自从JDK 1.4.2以来,SUN官方就停止维护该收集器了。所以俺就节省点口水,不多说了。
?
★如何降低GC的影响??
◇尽量减少堆内存的使用
由于GC是针对存储在堆内存的对象进行的。咱们假如在程序中减少引用对象的分配(也就相应降低堆内存分配),那对于提高GC的性能是很有帮助滴。上次“字符串过滤实战 ”的帖子给出了一个例子,示范了如何通过降低堆内存的分配次数来提升性能。
?
◇设置合适的堆内存大小
JVM的堆内存是有讲究的,不能太大也不能太小。假如堆内存太小,JVM老是感觉内存不够用,可能会导致频繁进行垃圾回收,影响了性能;假如堆内存太大,以至于操作系统的大部分物理内存都被JVM自个儿霸占了,那可能会影响其它应用程序甚至操作系统本身的性能。
另外,年轻代的大小(或者说年轻代与年老代的比值)对于GC的性能也有明显影响。假如年轻代太小,可能导致次要收集很频繁;假如年轻代太大,导致次要收集的停顿很明显。
JVM提供了若干和堆内存大小相关的命令行选项,具体如下:
------------------------------
-Xms 设置初始堆内存
-Xmx 设置最大堆内存
-Xmn 设置年轻代的大小
-XX:NewRatio=n 设置年轻代与年老代的比例为“n”
-XX:NewSize=n 设置年轻代大小为“n”
------------------------------
一般情况下,JVM的默认参数值已经够用。所以没事儿别轻易动用上述选项。假如你非调整不可,一定要做深入的性能对比测试,保证调整后的性能确实优于默认参数值。
?
◇吞吐量和停顿的取舍
前面提到了不同应用的众口难调。常见的口味有两种:(1)看重吞吐量,对停顿时间无所谓;(2)侧重于停顿时间。
对于某些在后台的、单纯运算密集型的应用,属于第一种。比如某些科学计算的应用。这时候建议使用并行收集器。
对于涉及用户UI交互的、实时性要求比较高、程序需要快速响应的,属于第二种。比如某些桌面游戏、某些电信交换系统。这时候建议使用并发收集器。
?
★相关的参考资料?
◇GC调优资料
SUN官方提供了若干关于JVM垃圾回收调优的说明文档,JDK 1.4.2请看“这里 ”;JDK 1.5请看“这里 ”;JDK 1.6请看“这里 ”。
◇JVM命令行选项说明
这是SUN公司内的某个有心人整理的各种命令行参数大全,在“这里 ”。包括有每个参数所适用的JDK版本。
◇虚拟机规范
“这里 ”是SUN官方的JVM规范。
分享到:
相关推荐
### Java内存分配机制详解 #### 一、引言 Java作为一种广泛应用的编程语言,其内存管理机制对于确保程序高效稳定运行至关重要。本文旨在详细介绍Java内存分配机制中的几个关键概念:寄存器、栈、堆、静态域、常量...
通过对Java内存管理机制的深入分析,我们可以了解到Java如何高效地管理和利用内存资源。理解这些机制对于优化Java应用程序的性能至关重要,特别是在处理大规模数据集或多线程环境时。此外,合理配置JVM参数和选择...
"java管理windows系统内存_java释放内存缓存_java获得CPU使用率_系统内存_硬盘_进程源代码" 在Windows操作系统中,内存管理是一个非常重要的方面。Windows实现按需调页的虚拟内存机制,使得应用程序可以使用超过...
### Java内存泄漏解决方案详解 #### 一、Java内存泄漏概述 在Java开发过程中,经常会遇到内存泄漏的问题,尤其是在长时间运行的应用程序中更为常见。本文将详细介绍如何解决Java内存泄漏问题,帮助开发者更好地...
Java 中的内存管理机制是自动的,开发者不需要手动释放内存,但是这也使得 Java 程序占用内存相对较高。为了避免内存泄露,开发者需要注意在编写程序时,合理地使用内存资源。 Java 内存原理的优点: * 自动内存...
Java内存模型是Java虚拟机规范中定义的一部分,它规定了Java程序中变量的读写行为,以及线程之间的交互规则。理解Java内存模型对于编写正确、高效的多线程程序至关重要。在Java 5之前,Java内存模型的描述比较模糊,...
Java内存回收机制 Java的内存管理主要集中在堆(Heap)区域,其中对象的创建通常是通过`new`关键字或反射方式完成,而对象的释放则由Java虚拟机(JVM)通过垃圾回收(GC)机制自动处理。对象回收的基本原则是:当一个...
1. **Java内存管理** - **内存分配**:在Java中,内存的分配主要由程序通过`new`关键字来完成。对象都分配在堆内存(Heap)中,而基本数据类型(如int, short, long, byte, float, double, boolean, char)的实例则...
"易语言内存释放"这个主题主要涉及到程序运行过程中动态分配和释放内存的过程。本文将深入探讨易语言中的内存管理,特别是内存释放及其相关的技术。 易语言是中国本土开发的一种编程语言,其设计目标是让编程变得...
### Java数组与内存控制 #### 一、Java数组在内存分配方面的知识 ##### 1.1 数组初始化 - **声明数组的时候如何分配内存:** - 在Java中,数组的...理解Java数组及其内存管理机制对于高效编写Java程序至关重要。
本文将深入探讨Java内存管理机制,包括垃圾回收、内存分配与释放、内存泄漏及其预防措施,以及四种引用类型的特点和应用场景。 首先,Java内存分为堆内存(Heap)和栈内存(Stack)。堆内存主要用于存储对象实例,...
Java内存区域和垃圾收集(GC)机制是Java编程中至关重要的一部分,它关乎程序的性能、稳定性和资源管理。本文将深入探讨Java虚拟机(JVM)中的内存划分、垃圾收集的工作原理以及相关工具的使用。 1. **Java内存区域...
Java内存泄露检测是Java开发中一个关键的议题,因为它直接影响到程序的稳定性和资源效率。内存泄露是指程序中已分配的内存无法被正确地释放,从而导致系统资源的浪费和可能导致程序性能下降甚至崩溃。 首先,理解...
**垃圾收集(Garbage Collection, GC)**是Java内存管理的重要部分,其目标是自动识别并回收不再使用的对象,释放内存。Java提供多种垃圾收集算法,如标记-清除、复制、标记-整理和分代收集。其中,分代收集将堆内存...
深入理解Java内存结构对于开发高效、稳定的Java应用程序至关重要,它涉及到内存管理、垃圾收集、并发编程等多个方面。本文将对Java内存结构进行深入探讨,帮助读者建立坚实的理论基础,从而提升在实际开发中的编程...
Java程序员了解CPU以及相关的内存模型,对于深入理解...通过分析具体的编程问题,比如Java锁的不同实现方式、CPU缓存的工作机制等,可以帮助程序员更好地理解Java内存模型,在多线程环境下写出更加健壮和高效的代码。
**二、Java内存分配机制** Java的内存分配涉及到堆、栈、方法区、本地方法栈和程序计数器等几个区域: 1. **堆内存**:这是所有对象实例以及数组的存储区域。Java垃圾收集器主要负责清理堆中的无用对象。 2. **栈...
总之,Java内存溢出是复杂的问题,需要结合程序设计、JVM参数配置、垃圾收集机制和内存分析工具等多个方面进行综合分析和处理。理解这些概念并熟练运用,能有效防止和解决Java应用程序中的内存问题。
Java 实现内存动态分配主要涉及Java内存模型以及内存管理机制,包括堆内存和栈内存的分配,以及垃圾回收等概念。下面将详细解释这些知识点。 1. **Java内存模型** Java程序运行时,内存分为堆内存(Heap)和栈内存...