- 浏览: 79062 次
- 性别:
- 来自: 保定
使用Memory Analyzer tool(MAT)分析内存泄漏(一)
前言的前言:本文是自2005年8月以来,首次在一个月之内发布三篇文章。谨以此文献给这么多年始终不济的我。所谓少不入川,而今已非年少。北漂快两年了,何时能回到故乡,回去后又会怎样,也许永远是个未知…… 前言 在平时工作过程中,有时会遇到OutOfMemoryError,我们知道遇到Error一般表明程序存在着严重问题,可能是灾难性的。所以找出是什么原因造成OutOfMemoryError非常重要。现在向大家引荐Eclipse Memory Analyzer tool(MAT),来化解我们遇到的难题。如未说明,本文均使用Java 5.0 on Windows XP SP3环境。 为什么用MAT 之前的观点,我认为使用实时profiling/monitoring之类的工具,用一种非常实时的方式来分析哪里存在内存泄漏是很正确的。年初使用了某profiler工具测试消息中间件中存在的内存泄漏,发现在吞吐量很高的时候profiler工具自己也无法响应,这让人很头痛。后来了解到这样的工具本身就要消耗性能,且在某些条件下还发现不了泄漏。所以,分析离线数据就非常重要了,MAT正是这样一款工具。 为何会内存溢出 我们知道JVM根据generation(代)来进行GC,根据下图所示,一共被分为young generation(年轻代)、tenured generation(老年代)、permanent generation(永久代, perm gen),perm gen(或称Non-Heap非堆)是个异类,稍后会讲到。注意,heap空间不包括perm gen。 绝大多数的对象都在young generation被分配,也在young generation被收回,当young generation的空间被填满,GC会进行minor collection(次回收),这次回收不涉及到heap中的其他generation,minor collection根据weak generational hypothesis(弱年代假设)来假设young generation中大量的对象都是垃圾需要回收,minor collection的过程会非常快。young generation中未被回收的对象被转移到tenured generation,然而tenured generation也会被填满,最终触发major collection(主回收),这次回收针对整个heap,由于涉及到大量对象,所以比minor collection慢得多。 JVM有三种垃圾回收器,分别是throughput collector,用来做并行young generation回收,由参数-XX:+UseParallelGC启动;concurrent low pause collector,用来做tenured generation并发回收,由参数-XX:+UseConcMarkSweepGC启动;incremental low pause collector,可以认为是默认的垃圾回收器。不建议直接使用某种垃圾回收器,最好让JVM自己决断,除非自己有足够的把握。 Heap中各generation空间是如何划分的?通过JVM的-Xmx=n参数可指定最大heap空间,而 参数 默认值 MinHeapFreeRatio 40 MaxHeapFreeRatio 70 -Xms 3670k -Xmx 64m 由于tenured generation的major collection较慢,所以tenured generation空间小于young generation的话,会造成频繁的major collection,影响效率。Server JVM默认的young generation和tenured generation空间比例为1:2,也就是说young generation的eden和survivor空间之和是整个heap(当然不包括perm gen)的三分之一,该比例可以通过-XX:NewRatio=n参数来控制,而Client JVM默认的-XX:NewRatio是8。至于调整young generation空间大小的NewSize=n和MaxNewSize=n参数就不讲了,请参考后面的资料。 young generation中幸存的对象被转移到tenured generation,但不幸的是concurrent collector线程在这里进行major collection,而在回收任务结束前空间被耗尽了,这时将会发生Full Collections(Full GC),整个应用程序都会停止下来直到回收完成。Full GC是高负载生产环境的噩梦…… 现在来说说异类perm gen,它是JVM用来存储无法在Java语言级描述的对象,这些对象分别是类和方法数据(与class loader有关)以及interned strings(字符串驻留)。一般32位OS下perm gen默认64m,可通过参数-XX:MaxPermSize=n指定,JVM Memory Structure一文说,对于这块区域,没有更详细的文献了,神秘。 回到问题“为何会内存溢出?”。 要回答这个问题又要引出另外一个话题,既什么样的对象GC才会回收?当然是GC发现通过任何reference chain(引用链)无法访问某个对象的时候,该对象即被回收。名词GC Roots正是分析这一过程的起点,例如JVM自己确保了对象的可到达性(那么JVM就是GC Roots),所以GC Roots就是这样在内存中保持对象可到达性的,一旦不可到达,即被回收。通常GC Roots是一个在current thread(当前线程)的call stack(调用栈)上的对象(例如方法参数和局部变量),或者是线程自身或者是system class loader(系统类加载器)加载的类以及native code(本地代码)保留的活动对象。所以GC Roots是分析对象为何还存活于内存中的利器。知道了什么样的对象GC才会回收后,再来学习下对象引用都包含哪些吧。 从最强到最弱,不同的引用(可到达性)级别反映了对象的生命周期。 l Strong Ref(强引用):通常我们编写的代码都是Strong Ref,于此对应的是强可达性,只有去掉强可达,对象才被回收。 l Soft Ref(软引用):对应软可达性,只要有足够的内存,就一直保持对象,直到发现内存吃紧且没有Strong Ref时才回收对象。一般可用来实现缓存,通过java.lang.ref.SoftReference类实现。 l Weak Ref(弱引用):比Soft Ref更弱,当发现不存在Strong Ref时,立刻回收对象而不必等到内存吃紧的时候。通过java.lang.ref.WeakReference和java.util.WeakHashMap类实现。 l Phantom Ref(虚引用):根本不会在内存中保持任何对象,你只能使用Phantom Ref本身。一般用于在进入finalize()方法后进行特殊的清理过程,通过 java.lang.ref.PhantomReference实现。 有了上面的种种我相信很容易就能把heap和perm gen撑破了吧,是的利用Strong Ref,存储大量数据,直到heap撑破;利用interned strings(或者class loader加载大量的类)把perm gen撑破。 关于shallow size、retained size Shallow size就是对象本身占用内存的大小,不包含对其他对象的引用,也就是对象头加成员变量(不是成员变量的值)的总和。在32位系统上,对象头占用8字节,int占用4字节,不管成员变量(对象或数组)是否引用了其他对象(实例)或者赋值为null它始终占用4字节。故此,对于String对象实例来说,它有三个int成员(3*4=12字节)、一个char[]成员(1*4=4字节)以及一个对象头(8字节),总共3*4 +1*4+8=24字节。根据这一原则,对String a=”rosen jiang”来说,实例a的shallow size也是24字节(很多人对此有争议,请看官甄别并留言给我)。 Retained size是该对象自己的shallow size,加上从该对象能直接或间接访问到对象的shallow size之和。换句话说,retained size是该对象被GC之后所能回收到内存的总和。为了更好的理解retained size,不妨看个例子。 把内存中的对象看成下图中的节点,并且对象和对象之间互相引用。这里有一个特殊的节点GC Roots,正解!这就是reference chain的起点。
从obj1入手,上图中蓝色节点代表仅仅只有通过obj1才能直接或间接访问的对象。因为可以通过GC Roots访问,所以左图的obj3不是蓝色节点;而在右图却是蓝色,因为它已经被包含在retained集合内。 所以对于左图,obj1的retained size是obj1、obj2、obj4的shallow size总和;右图的retained size是obj1、obj2、obj3、obj4的shallow size总和。obj2的retained size可以通过相同的方式计算。 Heap Dump heap dump是特定时间点,java进程的内存快照。有不同的格式来存储这些数据,总的来说包含了快照被触发时java对象和类在heap中的情况。由于快照只是一瞬间的事情,所以heap dump中无法包含一个对象在何时、何地(哪个方法中)被分配这样的信息。 在不同平台和不同java版本有不同的方式获取heap dump,而MAT需要的是HPROF格式的heap dump二进制文件。想无需人工干预的话,要这样配置JVM参数:-XX:-HeapDumpOnOutOfMemoryError,当错误发生时,会自动生成heap dump,在生产环境中,只有用这种方式。如果你想自己控制什么时候生成heap dump,在Windows+JDK6环境中可利用JConsole工具,而在Linux或者Mac OS X环境下均可使用JDK5、6自带的jmap工具。当然,还可以配置JVM参数:-XX:+HeapDumpOnCtrlBreak,也就是在控制台使用Ctrl+Break键来生成heap dump。由于我是windows+JDK5,所以选择了-XX:-HeapDumpOnOutOfMemoryError这种方式,更多配置请参考MAT Wiki。 http://www.blogjava.net/rosen/archive/2010/06/13/323522.html 写blog就是好,在大前提下可以想说什么写什么,不像投稿那么字字斟酌。上周末回了趟成都办事,所以本文来迟了。K117从达州经由达成线往成都方向走的时候,发现铁路边有条河,尽管我现在也不知道其名字,但已被其深深的陶醉。河很宽且水流平缓,河边山丘森林密布,民房星星点点的分布在河边,河里偶尔些小船。当时我就在想,在这里生活是多么的惬意,夏天还可以下去畅游一番,闲来无事也可垂钓。唉,越来越讨厌北漂了。 参考资料 Strong,Soft,Weak,Phantom Reference Tuning Garbage Collection with the 5.0 Java[tm] Virtual Machine Understanding Weak References译文 请注意!引用、转贴本文应注明原作者:Rosen Jiang 以及出处: http://www.blogjava.net/rosen-Xms=n
则是指定
最小heap空间。在JVM初始化的时候,如果最小heap空间小于最大heap空间的话,如上图所示JVM会把未用到的空间标注为Virtual。除了这两个参数还有-XX:MinHeapFreeRatio=n和 -XX:MaxHeapFreeRatio=n来分别控制最大、最小的剩余空间与活动对象之比例。在32位Solaris SPARC操作系统下,默认值如下,在32位windows xp下,默认值也差不多。
前言
在使用Memory Analyzer tool(MAT)分析内存泄漏(一)中,我介绍了内存泄漏的前因后果。在本文中,将介绍MAT如何根据heap dump分析泄漏根源。由于测试范例可能过于简单,很容易找出问题,但我期待借此举一反三。
一开始不得不说说ClassLoader,本质上,它的工作就是把磁盘上的类文件读入内存,然后调用java.lang.ClassLoader.defineClass方法告诉系统把内存镜像处理成合法的字节码。Java提供了抽象类ClassLoader,所有用户自定义类装载器都实例化自ClassLoader的子类。system class loader在没有指定装载器的情况下默认装载用户类,在Sun Java 1.5中既sun.misc.Launcher$AppClassLoader。更详细的内容请参看下面的资料。
准备heap dump
请看下面的Pilot类,没啥特殊的。
* Pilot class
* @author rosen jiang
*/
package org.rosenjiang.bo;
public class Pilot{
String name;
int age;
public Pilot(String a, int b){
name = a;
age = b;
}
}
然后再看OOMHeapTest类,它是如何撑破heap dump的。
* OOMHeapTest class
* @author rosen jiang
*/
package org.rosenjiang.test;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import org.rosenjiang.bo.Pilot;
public class OOMHeapTest {
public static void main(String[] args){
oom();
}
private static void oom(){
Map<String, Pilot> map = new HashMap<String, Pilot>();
Object[] array = new Object[1000000];
for(int i=0; i<1000000; i++){
String d = new Date().toString();
Pilot p = new Pilot(d, i);
map.put(i+"rosen jiang", p);
array[i]=p;
}
}
}
是的,上面构造了很多的Pilot类实例,向数组和map中放。由于是Strong Ref,GC自然不会回收这些对象,一直放在heap中直到溢出。当然在运行前,先要在Eclipse中配置VM参数-XX:+HeapDumpOnOutOfMemoryError。好了,一会儿功夫内存溢出,控制台打出如下信息。
Dumping heap to java_pid3600.hprof
Heap dump file created [78233961 bytes in 1.995 secs]
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
java_pid3600.hprof既是heap dump,可以在OOMHeapTest类所在的工程根目录下找到。
MAT安装
话分两头说,有了heap dump还得安装MAT。可以在http://www.eclipse.org/mat/downloads.php选择合适的方式安装。安装完成后切换到Memory Analyzer视图。在Eclipse的左上角有Open Heap Dump按钮,按照刚才说的路径找到java_pid3600.hprof文件并打开。解析hprof文件会花些时间,然后会弹出向导,直接Finish即可。稍后会看到下图所示的界面。
MAT工具分析了heap dump后在界面上非常直观的展示了一个饼图,该图深色区域被怀疑有内存泄漏,可以发现整个heap才64M内存,深色区域就占了99.5%。接下来是一个简短的描述,告诉我们main线程占用了大量内存,并且明确指出system class loader加载的"java.lang.Thread"实例有内存聚集,并建议用关键字"java.lang.Thread"进行检查。所以,MAT通过简单的两句话就说明了问题所在,就算使用者没什么处理内存问题的经验。在下面还有一个"Details"链接,在点开之前不妨考虑一个问题:为何对象实例会聚集在内存中,为何存活(而未被GC)?是的——Strong Ref,那么再走近一些吧。
点击了"Details"链接之后,除了在上一页看到的描述外,还有Shortest Paths To the Accumulation Point和Accumulated Objects部分,这里说明了从GC root到聚集点的最短路径,以及完整的reference chain。观察Accumulated Objects部分,java.util.HashMap和java.lang.Object[1000000]实例的retained heap(size)最大,在上一篇文章中我们知道retained heap代表从该类实例沿着reference chain往下所能收集到的其他类实例的shallow heap(size)总和,所以明显类实例都聚集在HashMap和Object数组中了。这里我们发现一个有趣的现象,既Object数组的shallow heap和retained heap竟然一样,通过Shallow and retained sizes一文可知,数组的shallow heap和一般对象(非数组)不同,依赖于数组的长度和里面的元素的类型,对数组求shallow heap,也就是求数组集合内所有对象的shallow heap之和。好,再来看org.rosenjiang.bo.Pilot对象实例的shallow heap为何是16,因为对象头是8字节,成员变量int是4字节、String引用是4字节,故总共16字节。
接着往下看,来到了Accumulated Objects by Class区域,顾名思义,这里能找到被聚集的对象实例的类名。org.rosenjiang.bo.Pilot类上头条了,被实例化了290,325次,再返回去看程序,我承认是故意这么干的。还有很多有用的报告可用来协助分析问题,只是本文中的例子太简单,也用不上。以后如有用到,一定撰文详细叙述。
又是perm gen
我们在上一篇文章中知道,perm gen是个异类,里面存储了类和方法数据(与class loader有关)以及interned strings(字符串驻留)。在heap dump中没有包含太多的perm gen信息。那么我们就用这些少量的信息来解决问题吧。
看下面的代码,利用interned strings把perm gen撑破了。
* OOMPermTest class
* @author rosen jiang
*/
package org.rosenjiang.test;
public class OOMPermTest {
public static void main(String[] args){
oom();
}
private static void oom(){
Object[] array = new Object[10000000];
for(int i=0; i<10000000; i++){
String d = String.valueOf(i).intern();
array[i]=d;
}
}
}
控制台打印如下的信息,然后把java_pid1824.hprof文件导入到MAT。其实在MAT里,看到的状况应该和“OutOfMemoryError: Java heap space”差不多(用了数组),因为heap dump并没有包含interned strings方面的任何信息。只是在这里需要强调,使用intern()方法的时候应该多加注意。
Dumping heap to java_pid1824.hprof
Heap dump file created [121273334 bytes in 2.845 secs]
Exception in thread "main" java.lang.OutOfMemoryError: PermGen space
倒是在思考如何把class loader撑破废了些心思。经过尝试,发现使用ASM来动态生成类才能达到目的。ASM(http://asm.objectweb.org)的主要作用是处理已编译类(compiled class),能对已编译类进行生成、转换、分析(功能之一是实现动态代理),而且它运行起来足够的快和小巧,文档也全面,实属居家必备之良品。ASM提供了core API和tree API,前者是基于事件的方式,后者是基于对象的方式,类似于XML的SAX、DOM解析,但是使用tree API性能会有损失。既然下面要用到ASM,这里不得不啰嗦下已编译类的结构,包括:
1、修饰符(例如public、private)、类名、父类名、接口和annotation部分。
2、类成员变量声明,包括每个成员的修饰符、名字、类型和annotation。
3、方法和构造函数描述,包括修饰符、名字、返回和传入参数类型,以及annotation。当然还包括这些方法或构造函数的具体Java字节码。
4、常量池(constant pool)部分,constant pool是一个包含类中出现的数字、字符串、类型常量的数组。
已编译类和原来的类源码区别在于,已编译类只包含类本身,内部类不会在已编译类中出现,而是生成另外一个已编译类文件;其二,已编译类中没有注释;其三,已编译类没有package和import部分。
这里还得说说已编译类对Java类型的描述,对于原始类型由单个大写字母表示,Z代表boolean、C代表char、B代表byte、S代表short、I代表int、F代表float、J代表long、D代表double;而对类类型的描述使用内部名(internal name)外加前缀L和后面的分号共同表示来表示,所谓内部名就是带全包路径的表示法,例如String的内部名是java/lang/String;对于数组类型,使用单方括号加上数据元素类型的方式描述。最后对于方法的描述,用圆括号来表示,如果返回是void用V表示,具体参考下图。
下面的代码中会使用ASM core API,注意接口ClassVisitor是核心,FieldVisitor、MethodVisitor都是辅助接口。ClassVisitor应该按照这样的方式来调用:visit visitSource? visitOuterClass? ( visitAnnotation | visitAttribute )*( visitInnerClass | visitField | visitMethod )* visitEnd。就是说visit方法必须首先调用,再调用最多一次的visitSource,再调用最多一次的visitOuterClass方法,接下来再多次调用visitAnnotation和visitAttribute方法,最后是多次调用visitInnerClass、visitField和visitMethod方法。调用完后再调用visitEnd方法作为结尾。
注意ClassWriter类,该类实现了ClassVisitor接口,通过toByteArray方法可以把已编译类直接构建成二进制形式。由于我们要动态生成子类,所以这里只对ClassWriter感兴趣。首先是抽象类原型:
* @author rosen jiang
* MyAbsClass class
*/
package org.rosenjiang.test;
public abstract class MyAbsClass {
int LESS = -1;
int EQUAL = 0;
int GREATER = 1;
abstract int absTo(Object o);
}
其次是自定义类加载器,实在没法,ClassLoader的defineClass方法都是protected的,要加载字节数组形式(因为toByteArray了)的类只有继承一下自己再实现。
* @author rosen jiang
* MyClassLoader class
*/
package org.rosenjiang.test;
public class MyClassLoader extends ClassLoader {
public Class defineClass(String name, byte[] b) {
return defineClass(name, b, 0, b.length);
}
}
最后是测试类。
* @author rosen jiang
* OOMPermTest class
*/
package org.rosenjiang.test;
import java.util.ArrayList;
import java.util.List;
import org.objectweb.asm.ClassWriter;
import org.objectweb.asm.Opcodes;
public class OOMPermTest {
public static void main(String[] args) {
OOMPermTest o = new OOMPermTest();
o.oom();
}
private void oom() {
try {
ClassWriter cw = new ClassWriter(0);
cw.visit(Opcodes.V1_5, Opcodes.ACC_PUBLIC + Opcodes.ACC_ABSTRACT,
"org/rosenjiang/test/MyAbsClass", null, "java/lang/Object",
new String[] {});
cw.visitField(Opcodes.ACC_PUBLIC + Opcodes.ACC_FINAL + Opcodes.ACC_STATIC, "LESS", "I",
null, new Integer(-1)).visitEnd();
cw.visitField(Opcodes.ACC_PUBLIC + Opcodes.ACC_FINAL + Opcodes.ACC_STATIC, "EQUAL", "I",
null, new Integer(0)).visitEnd();
cw.visitField(Opcodes.ACC_PUBLIC + Opcodes.ACC_FINAL + Opcodes.ACC_STATIC, "GREATER", "I",
null, new Integer(1)).visitEnd();
cw.visitMethod(Opcodes.ACC_PUBLIC + Opcodes.ACC_ABSTRACT, "absTo",
"(Ljava/lang/Object;)I", null, null).visitEnd();
cw.visitEnd();
byte[] b = cw.toByteArray();
List<ClassLoader> classLoaders = new ArrayList<ClassLoader>();
while (true) {
MyClassLoader classLoader = new MyClassLoader();
classLoader.defineClass("org.rosenjiang.test.MyAbsClass", b);
classLoaders.add(classLoader);
}
} catch (Exception e) {
e.printStackTrace();
}
}
}
不一会儿,控制台就报错了。
Dumping heap to java_pid3023.hprof
Heap dump file created [92593641 bytes in 2.405 secs]
Exception in thread "main" java.lang.OutOfMemoryError: PermGen space
打开java_pid3023.hprof文件,注意看下图的Classes: 88.1k和Class Loader: 87.7k部分,从这点可看出class loader加载了大量的类。
更进一步分析,点击上图中红框线圈起来的按钮,选择Java Basics——Class Loader Explorer功能。打开后能看到下图所示的界面,第一列是class loader名字;第二列是class loader已定义类(defined classes)的个数,这里要说一下已定义类和已加载类(loaded classes)了,当需要加载类的时候,相应的class loader会首先把请求委派给父class loader,只有当父class loader加载失败后,该class loader才会自己定义并加载类,这就是Java自己的“双亲委派加载链”结构;第三列是class loader所加载的类的实例数目。
在Class Loader Explorer这里,能发现class loader是否加载了过多的类。另外,还有Duplicate Classes功能,也能协助分析重复加载的类,在此就不再截图了,可以肯定的是MyAbsClass被重复加载了N多次。
最后
其实MAT工具非常的强大,上面故弄玄虚的范例代码根本用不上MAT的其他分析功能,所以就不再描述了。其实对于OOM不只我列举的两种溢出错误,还有多种其他错误,但我想说的是,对于perm gen,如果实在找不出问题所在,建议使用JVM的-verbose参数,该参数会在后台打印出日志,可以用来查看哪个class loader加载了什么类,例:“[Loaded org.rosenjiang.test.MyAbsClass from org.rosenjiang.test.MyClassLoader]”。
全文完。
相关推荐
MAT是分析Java堆内存的一个工具,全称是 The Eclipse Memory Analyzer Tool,用来帮助分析内存泄漏和减少内存消耗。使用MAT分析Java堆快照,可以快速计算出对象的保留大小(Retained Sizes),查找到阻止对象被回收...
MAT 是一个开源的java内存分析工具,能够快速的分析dump文件,可以直观的看到各个对象在内存占用的量大小,以及类实例的数量,对象之间的引用关系,找出对象的GC Roots相关的信息,此外还能生成内存泄露报表,疑似...
Memory Analyzer Tool,简称MAT,是Oracle公司开发的一款强大的Java内存分析工具,专用于诊断和优化Java应用的内存使用情况。MAT独立版为Mac用户提供了在操作系统环境下独立运行的版本,方便开发者对Mac平台上的Java...
通过本次使用 Eclipse Memory Analyzer (MAT) 分析 Tomcat 内存溢出的过程,我们可以得出以下结论: - 内存管理对于 Java 应用程序至关重要。 - 遇到内存溢出或泄露问题时,MAT 是一款非常强大的工具,可以帮助快速...
MAT(Memory Analyzer Tool)是Eclipse项目开发的一款强大的Java内存分析工具,主要用于诊断Java应用程序的内存泄漏和性能问题。在标题中提到的“Eclipse Memory Analyzer Version 1.7.0.rar”是一个压缩包,其中...
内存分析是Java应用程序性能优化的关键环节,而Memory Analyzer Tool (MAT) 是IBM开发的一款强大的内存分析工具,专门用于诊断Java应用程序中的内存泄漏和性能问题。MAT不仅提供了详细的内存使用报告,还能帮助...
MemoryAnalyzer,即MAT(Memory Analyzer Tool),是一款由Eclipse基金会开发的强大的Java内存分析工具,尤其适用于IBM JVM(openj9)上的heap dump文件分析。本文将详细介绍MemoryAnalyzer的特性和功能,以及如何...
总之,MemoryAnalyzer是一款强大的Java内存分析工具,对于优化Java应用程序性能,防止内存泄漏,提高系统稳定性具有重要意义。掌握其使用方法,能帮助开发者提升专业技能,更好地驾驭Java内存管理。
MemoryAnalyzer,简称MAT,是IBM公司开发的一款强大的Java内存分析工具,尤其在处理Android应用的内存泄漏问题时,MAT显得尤为关键。本文将深入探讨MAT的功能、使用方法以及如何通过它来定位和解决Android应用中的...
为了帮助开发者更好地理解和优化Java应用程序的内存使用,Eclipse提供了Memory Analyzer Tool(MAT),一个强大的内存分析工具。本文将详细介绍MAT在Windows 64位系统中的使用,以及如何利用MAT对dump文件进行分析。...
Eclipse Memory Analyzer 是一个功能丰富且轻量的 Java 堆内存分析工具,可以用来辅助发现内存泄漏减 少内存占用。 使用 Memory Analyzer 来分析生产环境的 Java 堆转储文件,可以从数以百万计的对象中快速计算出对 ...
内存分析是Java应用程序性能优化的关键环节,而Memory Analyzer Tool (MAT) 是IBM提供的一款强大的、独立的内存分析工具,它并非作为Eclipse的集成插件存在。MAT的强大之处在于其能够帮助开发者深入理解应用程序的...
Eclipse Memory Analyzer(MAT,全称Memory Analyzer Tool)是一款强大的Java内存分析工具,尤其在Mac平台上,它提供了独立于Eclipse环境的版本,方便开发者直接使用。MAT的主要目标是帮助开发者诊断和解决Java应用...
MAT(Memory Analyzer Tool),一个基于Eclipse的内存分析工具,是一个快速、功能丰富的JAVA heap分析工具,它可以帮助我们查找内存泄漏和减少内存消耗。使用内存分析工具从众多的对象中进行分析,快速的计算出在内存...
描述中的"java eclipse memory analyzer (MAT) 内存分析工具 64位"进一步明确了MAT的功能和适用平台。MAT是Eclipse项目的一部分,是一个功能丰富的图形化工具,用于检查和理解Java应用的内存消耗。它提供了深入的...
MAT(Memory Analyzer Tool)工具是eclipse的一个插件,使用起来非常方便,尤其是在分析大内存的dump文件时,可以非常直观的看到各个对象在堆空间中所占用的内存大小、类实例数量、对象引用关系、利用OQL对象查询,...
Eclipse Memory Analyzer(内存分析器)是一款专门为Java堆内存分析而设计的工具,它可以协助开发者快速地分析内存泄漏问题,通过生成的报告指出潜在的内存泄漏可疑点。Memory Analyzer可以单独使用,也可以作为...