`

java线程安全总结 续(转载)

    博客分类:
  • JVM
阅读更多

转载自 ---- http://www.iteye.com/topic/808550

 

     站内很多人都问我,所谓线程的“工作内存”到底是个什么东西?有的人认为是线程的栈,其实这种理解是不正确的。看看JLS(java语言规范)对线程工作 内存的描述,线程的working memory只是cpu的寄存器和高速缓存的抽象描述。

 

      可能 很多人都觉得莫名其妙,说JVM的内存模型,怎么会扯到cpu上去呢?在此,我认为很有必要阐述下,免 得很多人看得不明不白的。先抛开java虚拟机不谈,我们都知道,现在的计算机,cpu在计算的时候,并不总是从内存读取数据,它的数据读取顺序优先级 是:寄存器-高速缓存-内存。线程耗费的是CPU,线程计算的时候,原始的数据来自内存,在计算过程中,有些数据可能被频繁读取,这些数据被存储在寄存器 和高速缓存中,当线程计算完后,这些缓存的数据在适当的时候应该写回内存。当个多个线程同时读写某个内存数据时,就会产生多线程并发问题,涉及到三个特 性:原子性,有序性,可见性。在《线程安全总结》这篇文章中,为了理解方便,我把原子性和有序性统一叫做“多线程执行有序性”。支持多线程的平台都会面临 这种问题,运行在多线程平台上支持多线程的语言应该提供解决该问题的方案。

 

       那么,我们看看JVM,JVM是一个虚拟 的计算机,它也会面临多线程并发问题,java程序运行在java虚拟机平台上,java程序员不可能直接去控制底层线程对寄存器高速缓存内存之间的同 步,那么java从语法层面,应该给开发人员提供一种解决方案,这个方案就是诸如 synchronized, volatile,锁机制(如同步块,就绪队 列,阻塞队列)等等。这些方案只是语法层面的,但我们要从本质上去理解它,不能仅仅知道一个 synchronized 可以保证同步就完了。   在这里我说的是jvm的内存模型,是动态的,面向多线程并发的,沿袭JSL的“working memory”的说法,只是不想牵扯到太多底层细节,因为 《线程安全总结》这篇文章意在说明怎样从语法层面去理解java的线程同步,知道各个关键字的使用场 景。

 

      今天有人问我,那java的线程不是有栈吗?难道栈不是工作内存吗?工作内存这四个字得放到具体的场景 中描述,方能体现它具体的意义,在描述JVM的线程同步时,工作内存指的是寄存器和告诉缓存的抽象描述,具体请自行参阅JLS。上面讲的都是动态的内存模 型,甚至已经超越了JVM的范围,那么JVM的内存静态存储是怎么划分的?今天还有人问我,jvm的内存模型不是有eden区吗?也不见你提起。我跟他 说,这是两个角度去看的,甚至是两个不同的范围,动态的线程同步的内存模型,涵盖了cpu,寄存器,高速缓存,内存;JVM的静态内存储模型只是一种对内 存的物理划分而已,它只局限在内存,而且只局限在JVM的内存。那些什么线程栈,eden区都仅仅在JVM内存。

 

      说说JVM的线程栈和有个朋友反复跟我纠结的eden区吧。JVM的内存,被划分了很多的区域:

1.程序计数器
每一个Java线程都有一个程序计数器来用于保存程序执行到当前方法的哪一个指令。
2.线程栈
线 程的每个方法被执行的时候,都会同时创建一个帧(Frame)用于存储本地变量表、操作栈、动态链接、方法出入口等信息。每一个方法的调用至完成,就意味 着一个帧在VM栈中的入栈至出栈的过程。如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常;如果VM栈可以 动态扩展(VM Spec中允许固定长度的VM栈),当扩展时无法申请到足够内存则抛出OutOfMemoryError异常。
3.本地方法栈
4.堆

每 个线程的栈都是该线程私有的,堆则是所有线程共享的。当我们new一个对象时,该对象就被分配到了堆中。但是堆,并不是一个简单的概念,堆区又划分了很多 区域,为什么堆划分成这么多区域,这是为了JVM的内存垃圾收集,似乎越扯越远了,扯到垃圾收集了,现在的jvm的gc都是按代收集,堆区大致被分为三大 块:新生代,旧生代,持久代(虚拟的);新生代又分为eden区,s0区,s1区。新建一个对象时,基本小的对象,生命周期短的对象都会放在新生代的 eden区中,eden区满时,有一个小范围的gc(minor gc),整个新生代满时,会有一个大范围的gc(major gc),将新生代里的部分对象转到旧生代里。
5.方法区
其 实就是永久代(Permanent Generation),方法区中存放了每个Class的结构信息,包括常量池、字段描述、方法描述等等。VM Space描述中对这个区域的限制非常宽松,除了和Java堆一样不需要连续的内存,也可以选择固定大小或者可扩展外,甚至可以选择不实现垃圾收集。相对 来说,垃圾收集行为在这个区域是相对比较少发生的,但并不是某些描述那样永久代不会发生GC(至 少对当前主流的商业JVM实现来说是如此),这里的GC主要是对常量池的回收和对类的卸载,虽然回收的“成绩”一般也比较差强人意,尤其是类卸载,条件相 当苛刻。
6.常量池
 Class 文件中除了有类的版本、字段、方法、接口等描述等信息外,还有一项信息是常量表(constant_pool table),用于存放编译期已可知的常量,这部分内容将在类加载后进入方法区(永久代)存放。但是Java语言并不要求常量一定只有编译期预置入 Class的常量表的内容才能进入方法区常量池,运行期间也可将新内容放入常量池(最典型的String.intern()方法)。

 

关于垃圾收集,在此不多说,流到垃圾收集那一章再详细说吧。关于java的同 步,其实还有基于CPU原语的比较并交换的非阻塞算法(CAS),不过这个在java的并发包里已经实现了很多,因此关于这点,就留到java并发包那一 章介绍吧。后面我会专门写一篇文章,JVM内存与垃圾收集。

分享到:
评论

相关推荐

    二十三种设计模式【PDF版】

    整体结构和一些主要职责(如数据库操作 事务跟踪 安全等),剩余的就是变化的东西,针对这个领域中具体应用产生的具体不同 的变化需求,而这些变化东西就是 J2EE 程序员所要做的。 由此可见,设计模式和 J2EE 在思想...

    智慧园区3D可视化解决方案PPT(24页).pptx

    在智慧园区建设的浪潮中,一个集高效、安全、便捷于一体的综合解决方案正逐步成为现代园区管理的标配。这一方案旨在解决传统园区面临的智能化水平低、信息孤岛、管理手段落后等痛点,通过信息化平台与智能硬件的深度融合,为园区带来前所未有的变革。 首先,智慧园区综合解决方案以提升园区整体智能化水平为核心,打破了信息孤岛现象。通过构建统一的智能运营中心(IOC),采用1+N模式,即一个智能运营中心集成多个应用系统,实现了园区内各系统的互联互通与数据共享。IOC运营中心如同园区的“智慧大脑”,利用大数据可视化技术,将园区安防、机电设备运行、车辆通行、人员流动、能源能耗等关键信息实时呈现在拼接巨屏上,管理者可直观掌握园区运行状态,实现科学决策。这种“万物互联”的能力不仅消除了系统间的壁垒,还大幅提升了管理效率,让园区管理更加精细化、智能化。 更令人兴奋的是,该方案融入了诸多前沿科技,让智慧园区充满了未来感。例如,利用AI视频分析技术,智慧园区实现了对人脸、车辆、行为的智能识别与追踪,不仅极大提升了安防水平,还能为园区提供精准的人流分析、车辆管理等增值服务。同时,无人机巡查、巡逻机器人等智能设备的加入,让园区安全无死角,管理更轻松。特别是巡逻机器人,不仅能进行360度地面全天候巡检,还能自主绕障、充电,甚至具备火灾预警、空气质量检测等环境感知能力,成为了园区管理的得力助手。此外,通过构建高精度数字孪生系统,将园区现实场景与数字世界完美融合,管理者可借助VR/AR技术进行远程巡检、设备维护等操作,仿佛置身于一个虚拟与现实交织的智慧世界。 最值得关注的是,智慧园区综合解决方案还带来了显著的经济与社会效益。通过优化园区管理流程,实现降本增效。例如,智能库存管理、及时响应采购需求等举措,大幅减少了库存积压与浪费;而设备自动化与远程监控则降低了维修与人力成本。同时,借助大数据分析技术,园区可精准把握产业趋势,优化招商策略,提高入驻企业满意度与营收水平。此外,智慧园区的低碳节能设计,通过能源分析与精细化管理,实现了能耗的显著降低,为园区可持续发展奠定了坚实基础。总之,这一综合解决方案不仅让园区管理变得更加智慧、高效,更为入驻企业与员工带来了更加舒适、便捷的工作与生活环境,是未来园区建设的必然趋势。

    labelme标注的json转mask掩码图,用于分割数据集 批量转化,生成cityscapes格式的数据集

    labelme标注的json转mask掩码图,用于分割数据集 批量转化,生成cityscapes格式的数据集

    (参考GUI)MATLAB GUI漂浮物垃圾分类检测.zip

    (参考GUI)MATLAB GUI漂浮物垃圾分类检测.zip

    人脸识别_OpenCV_活体检测_证件照拍照_Demo_1741778955.zip

    人脸识别项目源码实战

    人脸识别_科大讯飞_Face_签到系统_Swface_1741770704.zip

    人脸识别项目实战

    跟网型逆变器小干扰稳定性分析与控制策略优化simulink仿真模型和代码.zip

    本仿真模型基于MATLAB/Simulink(版本MATLAB 2016Rb)软件。建议采用matlab2016 Rb及以上版本打开。(若需要其他版本可联系代为转换) CSDN详情地址:https://blog.csdn.net/qq_50594161/article/details/146242453sharetype=blogdetail&sharerId=146242453&sharerefer=PC&sharesource=qq_50594161&spm=1011.2480.3001.8118

    16-1文本表示&词嵌入.ipynb

    实战练习分词、创建词表、文本处理

    45页-零碳智慧园区标准解决方案:模块化、可扩展且可复制的解决方案.pdf

    在智慧园区建设的浪潮中,一个集高效、安全、便捷于一体的综合解决方案正逐步成为现代园区管理的标配。这一方案旨在解决传统园区面临的智能化水平低、信息孤岛、管理手段落后等痛点,通过信息化平台与智能硬件的深度融合,为园区带来前所未有的变革。 首先,智慧园区综合解决方案以提升园区整体智能化水平为核心,打破了信息孤岛现象。通过构建统一的智能运营中心(IOC),采用1+N模式,即一个智能运营中心集成多个应用系统,实现了园区内各系统的互联互通与数据共享。IOC运营中心如同园区的“智慧大脑”,利用大数据可视化技术,将园区安防、机电设备运行、车辆通行、人员流动、能源能耗等关键信息实时呈现在拼接巨屏上,管理者可直观掌握园区运行状态,实现科学决策。这种“万物互联”的能力不仅消除了系统间的壁垒,还大幅提升了管理效率,让园区管理更加精细化、智能化。 更令人兴奋的是,该方案融入了诸多前沿科技,让智慧园区充满了未来感。例如,利用AI视频分析技术,智慧园区实现了对人脸、车辆、行为的智能识别与追踪,不仅极大提升了安防水平,还能为园区提供精准的人流分析、车辆管理等增值服务。同时,无人机巡查、巡逻机器人等智能设备的加入,让园区安全无死角,管理更轻松。特别是巡逻机器人,不仅能进行360度地面全天候巡检,还能自主绕障、充电,甚至具备火灾预警、空气质量检测等环境感知能力,成为了园区管理的得力助手。此外,通过构建高精度数字孪生系统,将园区现实场景与数字世界完美融合,管理者可借助VR/AR技术进行远程巡检、设备维护等操作,仿佛置身于一个虚拟与现实交织的智慧世界。 最值得关注的是,智慧园区综合解决方案还带来了显著的经济与社会效益。通过优化园区管理流程,实现降本增效。例如,智能库存管理、及时响应采购需求等举措,大幅减少了库存积压与浪费;而设备自动化与远程监控则降低了维修与人力成本。同时,借助大数据分析技术,园区可精准把握产业趋势,优化招商策略,提高入驻企业满意度与营收水平。此外,智慧园区的低碳节能设计,通过能源分析与精细化管理,实现了能耗的显著降低,为园区可持续发展奠定了坚实基础。总之,这一综合解决方案不仅让园区管理变得更加智慧、高效,更为入驻企业与员工带来了更加舒适、便捷的工作与生活环境,是未来园区建设的必然趋势。

    人脸识别_活体检测_数据录入_登录系统Face_Login_1741778308.zip

    人脸识别项目源码实战

    学生信息管理平台是一个基于Java Web技术的综合性管理平台

    学生信息管理系统是一个基于Java Web技术的综合性管理平台。通过此系统,可以实现对学生、教师、选课信息等的动态管理, 提升学校管理效率。系统采用分层架构设计,前端使用HTML、CSS,JavaScript和jQuery,后端基于Servlet,JSP和Spring框架,数据库采用MySQL。主要有四个大功能,学生管理( 增加学生信息、删除学生信息、修改学生信息、查询学生信息)、教师管理(增加教师信息、删除教师信息、修改教师信息、查询教师信息)、选课信息管理(添加选课、查询选课情况、删除选课记录)、系统管理( 登录与注册功能、 用户角色管理(老师,学生,管理员)、系统日志查看)。 技术架构 1.前端技术 HTML,CSS:静态页面布局与样式 JavaScript,jQuery:动态交互、DOM操作和AJAX请求 2.后端技术 Servlet:控制层,处理用户请求 JSP:页面动态生成 Spring:依赖注入,业务逻辑分离 3.数据库 MySQL:存储学生、教师,课程等数据 JDBC:数据库连接与操作

    PHP进阶系列之Swoole入门精讲(课程视频)

    本课程是 PHP 进阶系列之 Swoole 入门精讲,系统讲解 Swoole 在 PHP 高性能开发中的应用,涵盖 协程、异步编程、WebSocket、TCP/UDP 通信、任务投递、定时器等核心功能。通过理论解析和实战案例相结合,帮助开发者掌握 Swoole 的基本使用方法及其在高并发场景下的应用。 适用人群: 适合 有一定 PHP 基础的开发者、希望提升后端性能优化能力的工程师,以及 对高并发、异步编程感兴趣的学习者。 能学到什么: 掌握 Swoole 基础——理解 Swoole 的核心概念,如协程、异步编程、事件驱动等。 高并发处理——学习如何使用 Swoole 构建高并发的 Web 服务器、TCP/UDP 服务器。 实战项目经验——通过案例实践,掌握 Swoole 在 WebSocket、消息队列、微服务等场景的应用。 阅读建议: 建议先掌握 PHP 基础,了解 HTTP 服务器和并发处理相关概念。学习过程中,结合 官方文档和实际项目 进行实践,加深理解,逐步提升 Swoole 开发能力。

    人脸识别_表情分析_spider运行_数据采集用途_1741771318.zip

    人脸识别项目实战

    美颜_GPUimage_人脸识别_动态贴纸_Demo_1741771705.zip

    人脸识别项目实战

    人脸照片文件批量分辨率裁剪工具

    功能简介:本工具可实现批量对照片文件的人脸识别,并按指定分辨率进行转换保存。 可为人脸识别采集系统提供很好的辅助工具。 软件基本于OPENVC开发,识别精确,转换高效。 人脸识别工具 +人脸采集处理

    基于强化学习与肌肉长度反馈控制的高效无意识姿态稳定算法研究(可复现,有问题请联系博主)

    内容概要:本文探讨了利用肌长变化反馈控制(FCM-ML)和演员-评论家强化学习(ACRL-NGN)来有效实现人体上肢和下肢无意识姿态稳定的算法方法。通过构建一个包含949条肌肉和22个关节的全身计算模型,在不同初始姿势的情况下进行模拟试验,验证了这些方法的有效性和鲁棒性,结果显示FCM-ML方法比其他传统方法更适用于此类任务。研究指出人类及其他脊椎动物在无意识状态下,通过抗拮抗性的肌肉长度变化反馈机制来维持舒适状态下的自然身体姿势(NBP)。此外,研究还表明这种控制策略有助于机器人设计、运动员训练以及康复患者的治疗。 适用人群:生物力学、机器人学以及神经科学领域的研究人员、工程师,以及关注人体姿态控制及其应用的学者和技术人员。 使用场景及目标:①解释人和非人的脊椎动物如何在无意识情况下维持最佳姿势,特别是处于重力环境中的自然身体姿势(NBP)。②为机器人肌肉控制提供理论支持和发展方向,特别是在模拟多肌肉协调控制方面。③指导运动训练及病患恢复计划的设计与优化。 其他说明:研究发现ACRL-NGN结合FCM-ML不仅能够迅速有效地实现期望的姿态稳定性,而且不需要对肌肉分类,这使其在复

    反编译apk重要的工具之一

    反编译apk重要的工具之一

    `计算机视觉_Python_PyQt5_Opencv_综合图像处理与识别跟踪系统`.zip

    人脸识别项目实战

    FDTD复现圆偏振超透镜 ,FDTD; 复现; 圆偏振; 超透镜;,FDTD技术在超透镜复现圆偏振的实践

    FDTD复现圆偏振超透镜 ,FDTD; 复现; 圆偏振; 超透镜;,FDTD技术在超透镜复现圆偏振的实践

Global site tag (gtag.js) - Google Analytics