一.mongodb的监控
mongodb可以通过profile来监控数据,进行优化。
查看当前是否开启profile功能用命令
db.getProfilingLevel() 返回level等级,值为0|1|2,分别代表意思:0代表关闭,1代表记录慢命令,2代表全部
开始profile功能为
db.setProfilingLevel(level); #level等级,值同上
level为1的时候,慢命令默认值为100ms,更改为db.setProfilingLevel(level,slowms)如db.setProfilingLevel(1,50)这样就更改为50毫秒
通过db.system.profile.find() 查看当前的监控日志。
如:
> db.system.profile.find({millis:{$gt:500}})
{ "ts" : ISODate("2011-07-23T02:50:13.941Z"), "info" : "query order.order reslen:11022 nscanned:672230 \nquery: { status: 1.0 } nreturned:101 bytes:11006 640ms", "millis" : 640 }
{ "ts" : ISODate("2011-07-23T02:51:00.096Z"), "info" : "query order.order reslen:11146 nscanned:672302 \nquery: { status: 1.0, user.uid: { $gt: 1663199.0 } } nreturned:101 bytes:11130 647ms", "millis" : 647 }
这里值的含义是
ts:命令执行时间
info:命令的内容
query:代表查询
order.order: 代表查询的库与集合
reslen:返回的结果集大小,byte数
nscanned:扫描记录数量
nquery:后面是查询条件
nreturned:返回记录数及用时
millis:所花时间
如果发现时间比较长,那么就需要作优化。
比如nscanned数很大,或者接近记录总数,那么可能没有用到索引查询。
reslen很大,有可能返回没必要的字段。
nreturned很大,那么有可能查询的时候没有加限制。
mongo可以通过db.serverStatus()查看mongod的运行状态
> db.serverStatus()
{
"host" : "baobao-laptop",#主机名
"version" : "1.8.2",#版本号
"process" : "mongod",#进程名
"uptime" : 15549,#运行时间
"uptimeEstimate" : 15351,
"localTime" : ISODate("2011-07-23T06:07:31.220Z"),当前时间
"globalLock" : {
"totalTime" : 15548525410,#总运行时间(ns)
"lockTime" : 89206633, #总的锁时间(ns)
"ratio" : 0.005737305027178137,#锁比值
"currentQueue" : {
"total" : 0,#当前需要执行的队列
"readers" : 0,#读队列
"writers" : 0#写队列
},
"activeClients" : {
"total" : 0,#当前客户端执行的链接数
"readers" : 0,#读链接数
"writers" : 0#写链接数
}
},
"mem" : {#内存情况
"bits" : 32,#32位系统
"resident" : 337,#占有物理内存数
"virtual" : 599,#占有虚拟内存
"supported" : true,#是否支持扩展内存
"mapped" : 512
},
"connections" : {
"current" : 2,#当前链接数
"available" : 817#可用链接数
},
"extra_info" : {
"note" : "fields vary by platform",
"heap_usage_bytes" : 159008,#堆使用情况字节
"page_faults" : 907 #页面故作
},
"indexCounters" : {
"btree" : {
"accesses" : 59963, #索引被访问数
"hits" : 59963, #所以命中数
"misses" : 0,#索引偏差数
"resets" : 0,#复位数
"missRatio" : 0#未命中率
}
},
"backgroundFlushing" : {
"flushes" : 259, #刷新次数
"total_ms" : 3395, #刷新总花费时长
"average_ms" : 13.108108108108109, #平均时长
"last_ms" : 1, #最后一次时长
"last_finished" : ISODate("2011-07-23T06:07:22.725Z")#最后刷新时间
},
"cursors" : {
"totalOpen" : 0,#打开游标数
"clientCursors_size" : 0,#客户端游标大小
"timedOut" : 16#超时时间
},
"network" : {
"bytesIn" : 285676177,#输入数据(byte)
"bytesOut" : 286564,#输出数据(byte)
"numRequests" : 2012348#请求数
},
"opcounters" : {
"insert" : 2010000, #插入操作数
"query" : 51,#查询操作数
"update" : 5,#更新操作数
"delete" : 0,#删除操作数
"getmore" : 0,#获取更多的操作数
"command" : 148#其他命令操作数
},
"asserts" : {#各个断言的数量
"regular" : 0,
"warning" : 0,
"msg" : 0,
"user" : 2131,
"rollovers" : 0
},
"writeBacksQueued" : false,
"ok" : 1
}
db.stats()查看某一个库的原先状况
> db.stats()
{
"db" : "order",#库名
"collections" : 4,#集合数
"objects" : 2011622,#记录数
"avgObjSize" : 111.92214441878245,#每条记录的平均值
"dataSize" : 225145048,#记录的总大小
"storageSize" : 307323392,#预分配的存储空间
"numExtents" : 21,#事件数
"indexes" : 1,#索引数
"indexSize" : 74187744,#所以大小
"fileSize" : 1056702464,#文件大小
"ok" : 1
}
查看集合记录用
> db.order.stats()
{
"ns" : "order.order",#命名空间
"count" : 2010000,#记录数
"size" : 225039600,#大小
"avgObjSize" : 111.96,
"storageSize" : 307186944,
"numExtents" : 18,
"nindexes" : 1,
"lastExtentSize" : 56089856,
"paddingFactor" : 1,
"flags" : 1,
"totalIndexSize" : 74187744,
"indexSizes" : {
"_id_" : 74187744#索引为_id_的索引大小
},
"ok" : 1
}
mongostat命令查看运行中的实时统计,表示每秒实时执行的次数
mongodb还提供了一个机遇http的监控页面,可以访问http://ip:28017来查看,这个页面基本上是对上面的这些命令做了一下综合,所以这里不细述了。
二.mongodb的优化
根据上面这些监控手段,找到问题后,我们可以进行优化
上面找到了某一下慢的命令,现在我们可以通过执行计划跟踪一下,如
> db.order.find({ "status": 1.0, "user.uid": { $gt: 2663199.0 } }).explain()
{
"cursor" : "BasicCursor",#游标类型
"nscanned" : 2010000,#扫描数量
"nscannedObjects" : 2010000,#扫描对象
"n" : 337800,#返回数据
"millis" : 2838,#耗时
"nYields" : 0,
"nChunkSkips" : 0,
"isMultiKey" : false,
"indexOnly" : false,
"indexBounds" : {#使用索引(这里没有)
}
}
对于这样的,我们可以创建索引
可以通过 db.collection.ensureIndex({"字段名":1}) 来创建索引,1为升序,-1为降序,在已经有多数据的情况下,可用后台来执行,语句db.collection.ensureIndex({"字段名":1} , {backgroud:true})
获取索引用db.collection.getIndexes() 查看
这里我们创建一个user.uid的索引 >db.order.ensureIndex({"user.uid":1})
创建后重新执行
db.order.find({ "status": 1.0, "user.uid": { $gt: 2663199.0 } }).explain()
{
"cursor" : "BtreeCursor user.uid_1",
"nscanned" : 337800,
"nscannedObjects" : 337800,
"n" : 337800,
"millis" : 1371,
"nYields" : 0,
"nChunkSkips" : 0,
"isMultiKey" : false,
"indexOnly" : false,
"indexBounds" : {
"user.uid" : [
[
2663199,
1.7976931348623157e+308
]
]
}
}
扫描数量减少,速度提高。mongodb的索引设计类似与关系数据库,按索引查找加快书读,但是多了会对写有压力,所以这里就不再叙述了。
2.其他优化可以用hint强制索引查找,返回只是需要的数据,对数据分页等。
分享到:
相关推荐
《Zabbix MongoDB监控模板详解与应用》 在IT运维领域,实时、准确地监控系统运行状态至关重要,尤其对于数据密集型应用如MongoDB而言。Zabbix作为一款强大的开源监控工具,能够有效地帮助管理员监控和管理各种IT...
3. **高性能**:MongoDB优化了读写操作,提供了高性能的数据访问,特别是在处理大量的读写操作时。 4. **高可用性**:通过副本集(Replica Sets)实现,副本集是一组维护相同数据集的MongoDB服务器,可以提供数据的...
### MongoDB性能优化详解 #### 一、MongoDB性能优化概述 MongoDB作为一种广泛使用的NoSQL数据库,因其灵活性和高扩展性而备受青睐。然而,在实际应用过程中,由于数据量的增长和查询复杂性的增加,可能会遇到性能...
在管理和优化 MongoDB 实例时,监控其运行状态至关重要。本文将深入探讨 MongoDB 的监控工具,特别是 `mongostat` 和 `mongotop` 命令,以及它们在监控数据库性能中的作用。 首先,`mongostat` 是一个实用工具,...
本文将深入探讨如何验证MongoDB查询性能并进行优化。 首先,我们需要理解MongoDB的查询机制。MongoDB使用查询解释器来解析和执行查询操作。通过`explain()`方法,我们可以获取查询的执行计划,包括扫描的文档数量、...
MongoDB 提供了丰富的工具和命令来帮助管理员监控数据库的性能,从而进行优化。 首先,MongoDB 的监控功能主要通过 `profile` 系统来实现。`db.getProfilingLevel()` 命令用于检查当前的 profile 级别。级别有 0、1...
上海天旦网络(Netis)作为国际领先的业务(APM)与网络(NPM)性能管理领域的独立软件开发商,已经将MongoDB应用在性能监控、数据存储以及数据库监控方案中,从而保障关键业务的稳定运行。 在性能监控方面,MongoDB的...
MongoDB性能优化与监控是确保MongoDB高效运行的关键环节,对于大数据量和高并发的应用场景尤其重要。MongoDB作为一个分布式文件存储的数据库,其优化策略包括但不限于索引管理、执行计划分析以及监控等方面。 **一...
随着业务的发展,对MongoDB的监控变得至关重要,以确保系统的稳定性和性能优化。本文将详细介绍MongoDB自带的两个监控工具:`mongostat`和`mongotop`。 #### 二、`mongostat`命令 `mongostat`是MongoDB自带的状态...
对于MongoDB监控,我们需要一个专门的Python插件,它可以连接到MongoDB服务器,收集诸如连接状态、查询性能、存储容量等信息。 在监控MongoDB分片集群时,我们关注的要点包括: 1. **分片状态**:确保所有分片都...
1. 使用MongoDB监控工具:MongoDB提供了丰富的监控工具,如`db.serverStatus()`和`db.stats()`,用于查看数据库运行状态,包括内存使用、锁状态、网络流量等。 2. 日志分析:定期检查日志文件,找出可能导致性能...
在使用 MongoDB 构建高性能应用时,了解并实践性能优化策略至关重要。本篇文章将深入探讨 MongoDB 的性能最佳实践,旨在帮助你充分利用其潜力。 1. **数据模型设计** - **合适的文档结构**:设计紧凑且逻辑清晰的...
在基于MongoDB的Ops Manager(MMS)上进行性能调优,能够让用户通过一系列监控指标分析出MongoDB性能问题的根本原因,并据此进行相应的优化。 在进行性能调优时,我们首先需要定义用于指导性能调查的关键指标,随后...
MongoDB索引与性能优化 MongoDB聚合框架深入解析 MongoDB事务处理与并发控制 MongoDB数据备份与恢复策略 MongoDB集群与分片技术 MongoDB复制集与高可用性 MongoDB安全与权限管理 MongoDB与微服务架构集成 MongoDB...
MongoDB提供了丰富的诊断工具,如`db.serverStatus()`和`db.stats()`,帮助管理员监控数据库的运行状态和性能指标。此外,MongoDB Ops Manager提供了更全面的监控、报警和管理功能。 九、MongoDB与其他技术的集成 ...
总之,MongoDB的性能优化是一个持续的过程,需要结合监控、分析和调整来实现最佳性能。理解查询行为、正确使用索引、以及根据业务需求进行架构调整,都是确保MongoDB高效运行的关键。通过实施上述步骤,可以有效地...
这些信息对于数据库管理员和开发者来说是宝贵的,他们可以根据这些数据来优化数据库的配置和性能,从而满足应用程序对数据库性能的高要求。报告最后总结了插入和查询的性能表现,并提出了一些未解决的问题,这些问题...
针对 MongoDB 的优化是提高数据库性能的关键,这通常涉及到多个方面,包括内存配置、查询优化、索引管理和集群架构调整等。 首先,我们可以修改 MongoDB 的默认内存配置以适应更大的数据处理需求。在 MongoDB ...