`
stone2oo6
  • 浏览: 26375 次
社区版块
存档分类
最新评论

XML笔记(Performance Testing)

    博客分类:
  • XML
阅读更多

本文转自http://java.dzone.com/articles/xml-unmarshalling-benchmark,主要比较了JAXB/STAX1.0/Woodstox在解析多节点XML文件时内存和时间使用上的性能差异,遗憾的是缺少CPU使用的对比图。

 

 

XML unmarshalling benchmark in Java: JAXB vs STax vs Woodstox

 

 

 

Towards the end of last week I started thinking how to deal with large amounts of XML data in a resource-friendly way.The main problem that I wanted to solve was how to process large XML files in chunks while at the same time providing upstream/downstream systems with some data to process.

Of course I've been using JAXB technology for few years now; the main advantage of using JAXB is the quick time-to-market; if one possesses an XML schema, there are tools out there to auto-generate the corresponding Java domain model classes automatically (Eclipse Indigo, Maven jaxb plugins in various sauces, ant tasks, to name a few). The JAXB API then offers a Marshaller and an Unmarshaller to write/read XML data, mapping the Java domain model.

When thinking of JAXB as solution for my problem I suddendlly realised that JAXB keeps the whole objectification of the XML schema in memory, so the obvious question was: "How would our infrastructure cope with large XML files (e.g. in my case with a number of elements > 100,000) if we were to use JAXB?". I could have simply produced a large XML file, then a client for it and find out about memory consumption.

As one probably knows there are mainly two approaches to processing XML data in Java: DOM and SAX. With DOM, the XML document is represented into memory as a tree; DOM is useful if one needs cherry-pick access to the tree nodes or if one needs to write brief XML documents. On the other side of the spectrum there is SAX, an event-driven technology, where the whole document is parsed one XML element at the time, and for each XML significative event, callbacks are "pushed" to a Java client which then deals with them (such as START_DOCUMENT, START_ELEMENT, END_ELEMENT, etc). Since SAX does not bring the whole document into memory but it applies a cursor like approach to XML processing it does not consume huge amounts of memory. The drawback with SAX is that it processes the whole document start to finish; this might not be necessarily what one wants for large XML documents. In my scenario, for instance, I'd like to be able to pass to downstream systems XML elements as they are available, but at the same time maybe I'd like to pass only 100 elements at the time, implementing some sort of pagination solution. DOM seems too demanding from a memory-consumption point of view, whereas SAX seems to coarse-grained for my needs.

I remembered reading something about STax, a Java technology which offered a middle ground between the capability to pull XML elements (as opposed to pushing XML elements, e.g. SAX) while being RAM-friendly. I then looked into the technology and decided that STax was probably the compromise I was looking for; however I wanted to keep the easy programming model offered by JAXB, so I really needed a combination of the two. While investigating STax, I came across Woodstox; this open source project promises to be a faster XML parser than many othrers, so I decided to include it in my benchmark as well. I now had all elements to create a benchmark to give me memory consumption and processing speed metrics when processing large XML documents.

The benchmark plan

In order to create a benchmark I needed to do the following:

  • Create an XML schema which defined my domain model. This would be the input for JAXB to create the Java domain model
  • Create three large XML files representing the model, with 10,000 / 100,000 / 1,000,000 elements respectively
  • Have a pure JAXB client which would unmarshall the large XML files completely in memory
  • Have a STax/JAXB client which would combine the low-memory consumption of SAX technologies with the ease of programming model offered by JAXB
  • Have a Woodstox/JAXB client with the same characteristics of the STax/JAXB client (in few words I just wanted to change the underlying parser and see if I could obtain any performance boost)
  • Record both memory consumption and speed of processing (e.g. how quickly would each solution make XML chunks available in memory as JAXB domain model classes)
  • Make the results available graphically, since, as we know, one picture tells one thousands words.

The Domain Model XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://uk.co.jemos.integration.xml/large-file" xmlns:tns="http://uk.co.jemos.integration.xml/large-file" elementFormDefault="qualified">

    <complexType name="PersonType">
        <sequence>
            <element name="firstName" type="string"></element>
            <element name="lastName" type="string"></element>
            <element name="address1" type="string"></element>
            <element name="address2" type="string"></element>
            <element name="postCode" type="string"></element>
            <element name="city" type="string"></element>
            <element name="country" type="string"></element>
        </sequence>
        <attribute name="active" type="boolean" use="required" />
    </complexType>


    <complexType name="PersonsType">
        <sequence>
            <element name="person" type="tns:PersonType" maxOccurs="unbounded" minOccurs="1"></element>
        </sequence>
    </complexType>

    <element name="persons" type="tns:PersonsType">
    </element>
</schema>
 

 

I decided for a relatively easy domain model, with XML elements representing people, with their names and addresses. I also wanted to record whether a person was active.

Using JAXB to create the Java model

I am a fan of Maven and use it as my default tool to build systems. This is the POM I defined for this little benchmark:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>uk.co.jemos.tests.xml</groupId>
    <artifactId>large-xml-parser</artifactId>
    <version>1.0.0-SNAPSHOT</version>
    <packaging>jar</packaging>

    <name>large-xml-parser</name>
    <url>http://www.jemos.co.uk</url>

    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>2.3.2</version>
                <configuration>
                    <source>1.6</source>
                    <target>1.6</target>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.jvnet.jaxb2.maven2</groupId>
                <artifactId>maven-jaxb2-plugin</artifactId>
                <version>0.7.5</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>generate</goal>
                        </goals>
                    </execution>
                </executions>
                <configuration>
                    <schemaDirectory>${basedir}/src/main/resources</schemaDirectory>
                    <includeSchemas>
                        <includeSchema>**/*.xsd</includeSchema>
                    </includeSchemas>
                    <extension>true</extension>
                    <args>
                        <arg>-enableIntrospection</arg>
                        <arg>-XtoString</arg>
                        <arg>-Xequals</arg>
                        <arg>-XhashCode</arg>
                    </args>
                    <removeOldOutput>true</removeOldOutput>
                    <verbose>true</verbose>
                    <plugins>
                        <plugin>
                            <groupId>org.jvnet.jaxb2_commons</groupId>
                            <artifactId>jaxb2-basics</artifactId>
                            <version>0.6.1</version>
                        </plugin>
                    </plugins>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-jar-plugin</artifactId>
                <version>2.3.1</version>
                <configuration>
                    <archive>
                        <manifest>
                            <addClasspath>true</addClasspath>
                            <mainClass>uk.co.jemos.tests.xml.XmlPullBenchmarker</mainClass>
                        </manifest>
                    </archive>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>2.2</version>
                <configuration>
                    <outputDirectory>${project.build.directory}/site/downloads</outputDirectory>
                    <descriptors>
                        <descriptor>src/main/assembly/project.xml</descriptor>
                        <descriptor>src/main/assembly/bin.xml</descriptor>
                    </descriptors>
                </configuration>
            </plugin>
        </plugins>
    </build>

    <dependencies>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.5</version>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>uk.co.jemos.podam</groupId>
            <artifactId>podam</artifactId>
            <version>2.3.11.RELEASE</version>
        </dependency>
        <dependency>
            <groupId>commons-io</groupId>
            <artifactId>commons-io</artifactId>
            <version>2.0.1</version>
        </dependency>
        <!-- XML binding stuff -->
        <dependency>
            <groupId>com.sun.xml.bind</groupId>
            <artifactId>jaxb-impl</artifactId>
            <version>2.1.3</version>
        </dependency>
        <dependency>
            <groupId>org.jvnet.jaxb2_commons</groupId>
            <artifactId>jaxb2-basics-runtime</artifactId>
            <version>0.6.0</version>
        </dependency>
        <dependency>
            <groupId>org.codehaus.woodstox</groupId>
            <artifactId>stax2-api</artifactId>
            <version>3.0.3</version>
        </dependency>
    </dependencies>
</project>
 

Just few things to notice about this pom.xml.

  • I use Java 6, since starting from version 6, Java contains all the XML libraries for JAXB, DOM, SAX and STax.
  • To auto-generate the domain model classes from the XSD schema, I used the excellent maven-jaxb2-plugin, which allows, amongst other things, to obtain POJOs with toString, equals and hashcode support.

I have also declared the jar plugin, to create an executable jar for the benchmark and the assembly plugin to distribute an executable version of the benchmark. The code for the benchmark is attached to this post, so if you want to build it and run it yourself, just unzip the project file, open a command line and run:

$ mvn clean install assembly:assembly

This command will place *-bin.* files into the folder target/site/downloads. Unzip the one of your preference and to run the benchmark use (-Dcreate.xml=true will generate the XML files. Don't pass it if you have these files already, e.g. after the first run):

$ java -jar -Dcreate.xml=true large-xml-parser-1.0.0-SNAPSHOT.jar

Creating the test data

To create the test data, I used PODAM, a Java tool to auto-fill POJOs and JavaBeans with data. The code is as simple as:

JAXBContext context = JAXBContext
                .newInstance("xml.integration.jemos.co.uk.large_file");

        Marshaller marshaller = context.createMarshaller();
        marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE);
        marshaller.setProperty(Marshaller.JAXB_ENCODING, "UTF-8");

        PersonsType personsType = new ObjectFactory().createPersonsType();
        List<PersonType> persons = personsType.getPerson();
        PodamFactory factory = new PodamFactoryImpl();
        for (int i = 0; i < nbrElements; i++) {
            persons.add(factory.manufacturePojo(PersonType.class));
        }

        JAXBElement<PersonsType> toWrite = new ObjectFactory()
                .createPersons(personsType);

        File file = new File(fileName);
        BufferedOutputStream bos = new BufferedOutputStream(
                new FileOutputStream(file), 4096);

        try {
            marshaller.marshal(toWrite, bos);
            bos.flush();
        } finally {
            IOUtils.closeQuietly(bos);
        }
 

 

The XmlPullBenchmarker generates three large XML files under ~/xml-benchmark:

  • large-person-10000.xml (Approx 3M)
  • large-person-100000.xml (Approx 30M)
  • large-person-1000000.xml (Approx 300M)

Each file looks like the following:

 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<persons xmlns="http://uk.co.jemos.integration.xml/large-file">
    <person active="false">
        <firstName>Ult6yn0D7L</firstName>
        <lastName>U8DJoUTlK2</lastName>
        <address1>DxwlpOw6X3</address1>
        <address2>O4GGvxIMo7</address2>
        <postCode>Io7Kuz0xmz</postCode>
        <city>lMIY1uqKXs</city>
        <country>ZhTukbtwti</country>
    </person>
    <person active="false">
        <firstName>gBc7KeX9Tn</firstName>
        <lastName>kxmWNLPREp</lastName>
        <address1>9BIBS1m5GR</address1>
        <address2>hmtqpXjcpW</address2>
        <postCode>bHpF1rRldM</postCode>
        <city>YDJJillYrw</city>
        <country>xgsTDJcfjc</country>
    </person>

    [..etc]

</persons>
 

Each file contains 10,000 / 100,000 / 1,000,000 <person> elements.

The running environments

I tried the benchmarker on three different environments:

  • Ubuntu 10, 64-bit running as Virtual Machine on a Windows 7 ultimate, with CPU i5, 750 @2.67GHz and 2.66GHz, 8GB RAM of which 4GB dedicated to the VM. JVM: 1.6.0_25, Hotspot
  • Windows 7 Ultimate, hosting the above VM, therefore with same processor. JVM, 1.6.0_24, Hotspot
  • Ubuntu 10, 32-bit, 3GB RAM, dual core. JVM, 1.6.0_24, OpenJDK

The XML unmarshalling

To unmarshall the code I used three different strategies:

  • Pure JAXB
  • STax + JAXB
  • Woodstox + JAXB

Pure JAXB unmarshalling

The code which I used to unmarshall the large XML files using JAXB follows:

private void readLargeFileWithJaxb(File file, int nbrRecords)
            throws Exception {

        JAXBContext ucontext = JAXBContext
                .newInstance("xml.integration.jemos.co.uk.large_file");
        Unmarshaller unmarshaller = ucontext.createUnmarshaller();

        BufferedInputStream bis = new BufferedInputStream(new FileInputStream(
                file));

        long start = System.currentTimeMillis();
        long memstart = Runtime.getRuntime().freeMemory();
        long memend = 0L;

        try {
            JAXBElement<PersonsType> root = (JAXBElement<PersonsType>) unmarshaller
                    .unmarshal(bis);

            root.getValue().getPerson().size();

            memend = Runtime.getRuntime().freeMemory();

            long end = System.currentTimeMillis();

            LOG.info("JAXB (" + nbrRecords + "): - Total Memory used: "
                    + (memstart - memend));

            LOG.info("JAXB (" + nbrRecords + "): Time taken in ms: "
                    + (end - start));

        } finally {
            IOUtils.closeQuietly(bis);
        }

    }
 

The code uses a one-liner to unmarshall each XML file:

JAXBElement<PersonsType> root = (JAXBElement<PersonsType>) unmarshaller
                    .unmarshal(bis);
 

 

I also accessed the size of the underlying PersonType collection to "touch" in memory data. BTW, debugging the application showed that all 10,000 elements were indeed available in memory after this line of code.

JAXB + STax

With STax, I just had to use an XMLStreamReader, iterate through all < person> elements, and pass each in turn to JAXB to unmarshall it into a PersonType domain model object. The code follows:

 

   // set up a StAX reader
    XMLInputFactory xmlif = XMLInputFactory.newInstance();
    XMLStreamReader xmlr = xmlif
            .createXMLStreamReader(new FileReader(file));

    JAXBContext ucontext = JAXBContext.newInstance(PersonType.class);

    Unmarshaller unmarshaller = ucontext.createUnmarshaller();

    long start = System.currentTimeMillis();
    long memstart = Runtime.getRuntime().freeMemory();
    long memend = 0L;

    try {
        xmlr.nextTag();
        xmlr.require(XMLStreamConstants.START_ELEMENT, null, "persons");

        xmlr.nextTag();
        while (xmlr.getEventType() == XMLStreamConstants.START_ELEMENT) {

            JAXBElement<PersonType> pt = unmarshaller.unmarshal(xmlr,
                    PersonType.class);

            if (xmlr.getEventType() == XMLStreamConstants.CHARACTERS) {
                xmlr.next();
            }
        }

        memend = Runtime.getRuntime().freeMemory();

        long end = System.currentTimeMillis();

        LOG.info("STax - (" + nbrRecords + "): - Total memory used: "
                + (memstart - memend));

        LOG.info("STax - (" + nbrRecords + "): Time taken in ms: "
                + (end - start));

    } finally {
        xmlr.close();
    }

}
 

 

Note that this time when creating the context, I had to specify that it was for the PersonType object, and when invoking the JAXB unmarshalling I had to pass also the desired returned class type, with:

JAXBElement<PersonType> pt = unmarshaller.unmarshal(xmlr,
PersonType.class);

Note that I don't to anything with the object, just create it, to keep the benchmark as truthful and possible by not introducing any unnecessary steps.

JAXB + Woodstox

With Woodstox, the approach is very similar to the one used with STax. In fact Woodstox provides a STax2 compatible API, so all I had to do was to provide the correct factory and...bang! I had Woodstox under the cover working.

private void readLargeXmlWithFasterStax(File file, int nbrRecords)
        throws FactoryConfigurationError, XMLStreamException,
        FileNotFoundException, JAXBException {

    // set up a Woodstox reader
    XMLInputFactory xmlif = XMLInputFactory2.newInstance();
    XMLStreamReader xmlr = xmlif
            .createXMLStreamReader(new FileReader(file));

    JAXBContext ucontext = JAXBContext.newInstance(PersonType.class);

    Unmarshaller unmarshaller = ucontext.createUnmarshaller();

    long start = System.currentTimeMillis();
    long memstart = Runtime.getRuntime().freeMemory();
    long memend = 0L;

    try {
        xmlr.nextTag();
        xmlr.require(XMLStreamConstants.START_ELEMENT, null, "persons");

        xmlr.nextTag();
        while (xmlr.getEventType() == XMLStreamConstants.START_ELEMENT) {

            JAXBElement<PersonType> pt = unmarshaller.unmarshal(xmlr,
                    PersonType.class);

            if (xmlr.getEventType() == XMLStreamConstants.CHARACTERS) {
                xmlr.next();
            }
        }

        memend = Runtime.getRuntime().freeMemory();

        long end = System.currentTimeMillis();

        LOG.info("Woodstox - (" + nbrRecords + "): Total memory used: "
                + (memstart - memend));

        LOG.info("Woodstox - (" + nbrRecords + "): Time taken in ms: "
                + (end - start));

    } finally {
        xmlr.close();
    }

}
 

 

Note the following line:

XMLInputFactory xmlif = XMLInputFactory2.newInstance();
 
1.XMLInputFactory xmlif = XMLInputFactory2.newInstance();

Where I pass in a STax2 XMLInputFactory. This uses the Woodstox implementation.

 

The main loop

Once the files are in place (you obtain this by passing -Dcreate.xml=true), the main performs the following:

System.gc();
            System.gc();

            for (int i = 0; i < 10; i++) {

                main.readLargeFileWithJaxb(new File(OUTPUT_FOLDER
                        + File.separatorChar + "large-person-10000.xml"), 10000);
                main.readLargeFileWithJaxb(new File(OUTPUT_FOLDER
                        + File.separatorChar + "large-person-100000.xml"),
                        100000);
                main.readLargeFileWithJaxb(new File(OUTPUT_FOLDER
                        + File.separatorChar + "large-person-1000000.xml"),
                        1000000);

                main.readLargeXmlWithStax(new File(OUTPUT_FOLDER
                        + File.separatorChar + "large-person-10000.xml"), 10000);
                main.readLargeXmlWithStax(new File(OUTPUT_FOLDER
                        + File.separatorChar + "large-person-100000.xml"),
                        100000);
                main.readLargeXmlWithStax(new File(OUTPUT_FOLDER
                        + File.separatorChar + "large-person-1000000.xml"),
                        1000000);

                main.readLargeXmlWithFasterStax(new File(OUTPUT_FOLDER
                        + File.separatorChar + "large-person-10000.xml"), 10000);
                main.readLargeXmlWithFasterStax(new File(OUTPUT_FOLDER
                        + File.separatorChar + "large-person-100000.xml"),
                        100000);
                main.readLargeXmlWithFasterStax(new File(OUTPUT_FOLDER
                        + File.separatorChar + "large-person-1000000.xml"),
                        1000000);
            }
 

 

It invites the GC to run, although as we know this is at the GC Thread discretion. It then executes each strategy 10 times, to normalise RAM and CPU consumption. The final data are then collected by running an average on the ten runs.

The benchmark results for memory consumption

Here follow some diagrams which show memory consumption across the different running environments, when unmarshalling 10,000 / 100,000 / 1,000,000 files.

You will probably notice that memory consumption for STax-related strategies often shows a negative value. This means that there was more free memory after unmarshalling all elements than there was at the beginning of the unmarshalling loop; this, in turn, suggests that the GC ran a lot more with STax than with JAXB. This is logical if one thinks about it; since with STax we don't keep all objects into memory there are more objects available for garbage collection. In this particular case I believe the PersonType object created in the while loop gets eligible for GC and enters the young generation area and then it gets reclamed by the GC. This, however, should have a minimum impact on performance, since we know that claiming objects from the young generation space is done very efficiently.

Summary for 10,000 XML elements

Ram-usage-summary-10000

Summary for 100,000 XML elements

Ram-usage-summary-100000

Summary for 1,000,000 XML elements

Ram-usage-summary-1000000

The benchmark results for processing speed

Results for 10,000 elements

Time-taken-summary-10000

Results for 100,000 elements

Time-taken-summary-100000

Results for 1,000,000 elements

Time-taken-summary-1000000

Conclusions

The results on all three different environments, although with some differences, all tell us the same story:

  • If you are looking for performance (e.g. XML unmarshalling speed), choose JAXB
  • If you are looking for low-memory usage (and are ready to sacrifice some performance speed), then use STax.

My personal opinion is also that I wouldn't go for Woodstox, but I'd choose either JAXB (if I needed processing power and could afford the RAM) or STax (if I didn't need top speed and was low on infrastructure resources). Both these technologies are Java standards and part of the JDK starting from Java 6.

Resources

Benchmarker source code

Benchmarker executables:

Data files:

 

From http://tedone.typepad.com/blog/2011/06/unmarshalling-benchmark-in-java-jaxb-vs-stax-vs-woodstox.html

分享到:
评论

相关推荐

    精选_基于Android Studio实现的在线学习课堂APP_源码打包

    7. **性能优化(Performance Optimization)**:通过Android Profiler工具,可以监控CPU、内存、网络等资源使用情况,进行性能优化。 8. **测试(Testing)**:Android Studio支持单元测试和UI测试,可以编写JUnit...

    AI从头到脚详解如何创建部署Azure Web App的OpenAI项目源码

    【AI】从头到脚详解如何创建部署Azure Web App的OpenAI项目源码

    人脸识别_卷积神经网络_CNN_ORL数据库_身份验证_1741779511.zip

    人脸识别项目实战

    人工智能-人脸识别代码

    人工智能-人脸识别代码,采用cnn的架构识别代码

    汽车配件制造业企业信息化整体解决方案.pptx

    汽车配件制造业企业信息化整体解决方案

    短期风速预测模型,IDBO-BiTCN-BiGRU-Multihead-Attention IDBO是,网上复现 评价指标:R方、MAE、MAPE、RMSE 附带测试数据集运行(风速数据) 提示:在

    短期风速预测模型,IDBO-BiTCN-BiGRU-Multihead-Attention IDBO是,网上复现 评价指标:R方、MAE、MAPE、RMSE 附带测试数据集运行(风速数据) 提示:在MATLAB2024a上测试正常 ,短期风速预测模型; IDBO-BiTCN-BiGRU-Multihead-Attention; 评价指标: R方、MAE、MAPE、RMSE; 复现; 测试数据集; MATLAB 2024a,短期风速预测模型:IDBO-BiTCN-BiGRU-Attention集成模型

    手势识别_数据融合_运动融合帧_Pytorch实现_1741857761.zip

    手势识别项目实战

    智慧园区IBMS可视化管理系统建设方案PPT(61页).pptx

    在智慧园区建设的浪潮中,一个集高效、安全、便捷于一体的综合解决方案正逐步成为现代园区管理的标配。这一方案旨在解决传统园区面临的智能化水平低、信息孤岛、管理手段落后等痛点,通过信息化平台与智能硬件的深度融合,为园区带来前所未有的变革。 首先,智慧园区综合解决方案以提升园区整体智能化水平为核心,打破了信息孤岛现象。通过构建统一的智能运营中心(IOC),采用1+N模式,即一个智能运营中心集成多个应用系统,实现了园区内各系统的互联互通与数据共享。IOC运营中心如同园区的“智慧大脑”,利用大数据可视化技术,将园区安防、机电设备运行、车辆通行、人员流动、能源能耗等关键信息实时呈现在拼接巨屏上,管理者可直观掌握园区运行状态,实现科学决策。这种“万物互联”的能力不仅消除了系统间的壁垒,还大幅提升了管理效率,让园区管理更加精细化、智能化。 更令人兴奋的是,该方案融入了诸多前沿科技,让智慧园区充满了未来感。例如,利用AI视频分析技术,智慧园区实现了对人脸、车辆、行为的智能识别与追踪,不仅极大提升了安防水平,还能为园区提供精准的人流分析、车辆管理等增值服务。同时,无人机巡查、巡逻机器人等智能设备的加入,让园区安全无死角,管理更轻松。特别是巡逻机器人,不仅能进行360度地面全天候巡检,还能自主绕障、充电,甚至具备火灾预警、空气质量检测等环境感知能力,成为了园区管理的得力助手。此外,通过构建高精度数字孪生系统,将园区现实场景与数字世界完美融合,管理者可借助VR/AR技术进行远程巡检、设备维护等操作,仿佛置身于一个虚拟与现实交织的智慧世界。 最值得关注的是,智慧园区综合解决方案还带来了显著的经济与社会效益。通过优化园区管理流程,实现降本增效。例如,智能库存管理、及时响应采购需求等举措,大幅减少了库存积压与浪费;而设备自动化与远程监控则降低了维修与人力成本。同时,借助大数据分析技术,园区可精准把握产业趋势,优化招商策略,提高入驻企业满意度与营收水平。此外,智慧园区的低碳节能设计,通过能源分析与精细化管理,实现了能耗的显著降低,为园区可持续发展奠定了坚实基础。总之,这一综合解决方案不仅让园区管理变得更加智慧、高效,更为入驻企业与员工带来了更加舒适、便捷的工作与生活环境,是未来园区建设的必然趋势。

    相亲交友系统源码 V10.5支持婚恋相亲M红娘系统.zip

    相亲交友系统源码 V10.5支持婚恋相亲、媒婆返利、红娘系统、商城系统等等 这款交友系统功能太多了,适合婚恋相亲,还有媒婆婚庆等等支持 PC和 H5还有小程序,可封装红年、APP,里面带安装教程

    单片机也能玩双核之你想不到c技巧系列-嵌入式实战(资料+视频教程)

    本资源《单片机也能玩双核之你想不到的C技巧系列——嵌入式实战》涵盖 双核单片机开发、C语言高级技巧、嵌入式系统优化 等核心内容,结合 实战案例与视频教程,帮助开发者深入理解并掌握高效编程技巧。 适用人群: 适合 嵌入式开发工程师、单片机开发者、电子信息相关专业学生,以及希望提升 C语言编程能力 和 嵌入式项目经验 的技术人员。 能学到什么: 双核单片机开发思路,提高并行处理能力。 C语言高级技巧,提升代码优化与执行效率。 嵌入式系统调试方法,掌握实际项目中的调试策略。 实战案例解析,学习如何在实际工程中应用双核技术。 阅读建议: 建议 先学习基础知识,再结合 示例代码与视频教程 进行实操,重点关注 代码优化、调试技巧与双核应用模式,通过实战演练提高嵌入式开发能力。

    计算机视觉_OpenCV_人脸识别_成本节约检测方案_1741779495.zip

    人脸识别项目源码实战

    `机器学习_深度学习_Keras_教程用途`.zip

    人脸识别项目源码实战

    地铁网络_Dijkstra_最短路径_查询工具_1741862725.zip

    c语言学习

    红外光伏缺陷目标检测模型,YOLOv8模型 基于红外光伏缺陷目标检测数据集训练,做了必要的数据增强处理,以达到缺陷类别间的平衡 可检测大面积热斑,单一热斑,二极管短路和异常低温四类缺陷 测试集指标如

    红外光伏缺陷目标检测模型,YOLOv8模型 基于红外光伏缺陷目标检测数据集训练,做了必要的数据增强处理,以达到缺陷类别间的平衡 可检测大面积热斑,单一热斑,二极管短路和异常低温四类缺陷 测试集指标如图所示 ,核心关键词:红外光伏缺陷目标检测模型; YOLOv8模型; 数据增强处理; 缺陷类别平衡; 大面积热斑; 单一热斑; 二极管短路; 异常低温。,基于YOLOv8的红外光伏缺陷检测模型

    基于PLC的自动浇花控制系统 西门子1200PLC博途仿真,提供HMI画面,接线图,IO分配表,演示视频,简单讲解视频 博图15.1及以上版本均可使用 ,核心关键词: PLC自动浇花控制系统; 西

    基于PLC的自动浇花控制系统 西门子1200PLC博途仿真,提供HMI画面,接线图,IO分配表,演示视频,简单讲解视频 博图15.1及以上版本均可使用 ,核心关键词: PLC自动浇花控制系统; 西门子1200PLC博途仿真; HMI画面; 接线图; IO分配表; 演示视频; 简单讲解视频; 博图15.1及以上版本。,基于PLC的自动浇花系统:西门子1200PLC博途仿真实践教程

    智慧园区标准化综合解决方案PPT(60页).pptx

    在智慧园区建设的浪潮中,一个集高效、安全、便捷于一体的综合解决方案正逐步成为现代园区管理的标配。这一方案旨在解决传统园区面临的智能化水平低、信息孤岛、管理手段落后等痛点,通过信息化平台与智能硬件的深度融合,为园区带来前所未有的变革。 首先,智慧园区综合解决方案以提升园区整体智能化水平为核心,打破了信息孤岛现象。通过构建统一的智能运营中心(IOC),采用1+N模式,即一个智能运营中心集成多个应用系统,实现了园区内各系统的互联互通与数据共享。IOC运营中心如同园区的“智慧大脑”,利用大数据可视化技术,将园区安防、机电设备运行、车辆通行、人员流动、能源能耗等关键信息实时呈现在拼接巨屏上,管理者可直观掌握园区运行状态,实现科学决策。这种“万物互联”的能力不仅消除了系统间的壁垒,还大幅提升了管理效率,让园区管理更加精细化、智能化。 更令人兴奋的是,该方案融入了诸多前沿科技,让智慧园区充满了未来感。例如,利用AI视频分析技术,智慧园区实现了对人脸、车辆、行为的智能识别与追踪,不仅极大提升了安防水平,还能为园区提供精准的人流分析、车辆管理等增值服务。同时,无人机巡查、巡逻机器人等智能设备的加入,让园区安全无死角,管理更轻松。特别是巡逻机器人,不仅能进行360度地面全天候巡检,还能自主绕障、充电,甚至具备火灾预警、空气质量检测等环境感知能力,成为了园区管理的得力助手。此外,通过构建高精度数字孪生系统,将园区现实场景与数字世界完美融合,管理者可借助VR/AR技术进行远程巡检、设备维护等操作,仿佛置身于一个虚拟与现实交织的智慧世界。 最值得关注的是,智慧园区综合解决方案还带来了显著的经济与社会效益。通过优化园区管理流程,实现降本增效。例如,智能库存管理、及时响应采购需求等举措,大幅减少了库存积压与浪费;而设备自动化与远程监控则降低了维修与人力成本。同时,借助大数据分析技术,园区可精准把握产业趋势,优化招商策略,提高入驻企业满意度与营收水平。此外,智慧园区的低碳节能设计,通过能源分析与精细化管理,实现了能耗的显著降低,为园区可持续发展奠定了坚实基础。总之,这一综合解决方案不仅让园区管理变得更加智慧、高效,更为入驻企业与员工带来了更加舒适、便捷的工作与生活环境,是未来园区建设的必然趋势。

    大型集团用户画像系统化标准化数字化用户主数据管理项目规划方案.pptx

    大型集团用户画像系统化标准化数字化用户主数据管理项目规划方案

    基于STM32的水质 浊度检测仪设计与实现(详细设计说明书+ 10008-基于STM32的水质 浊度检测仪设计与实现(详细设计说明书+原理图PCB工程+源码工程+实物照片) 本次设计是设计一款水质检

    基于STM32的水质 浊度检测仪设计与实现(详细设计说明书+ 10008-基于STM32的水质 浊度检测仪设计与实现(详细设计说明书+原理图PCB工程+源码工程+实物照片) 本次设计是设计一款水质检测设备,实现温度检查、水质检测的功能,将检测到的数据显示到显示器中,并实时记录系统的参数 本次系统需要对温度检测,使用的传感器为DS18B20,通过单总线的方式来完成系统温度检测 使用水质检测模块检查水的质量 通过传感器检测到的数据计算后的值实时刷新到显示器中,主要的功能包括以下几点: ①可以对温度实时检测; ②可以对水质实际值实时检测; ③水质浑浊预警 主要特点: 1.以STM32单片机为核心,配合水质模块; 2.主要完成系统的 功能控制、状态显示、信息检测以及报警硬件组建所单片机和传感器等元器件的选择; 3.完成系统控制的软件设计编程; 4.实现对水质检测、温度检查、预警的功能 内容包含: 1、原理图工程 2、PCB工程 3、源码工程 4、实物照片 5、详细介绍说明书-22531字 6、实物照片 7、浊度传感器资料

    人脸识别_seetaface6_SDK_多功能应用开发工具包_1741771332.zip

    人脸识别项目实战

    华中科技大学计算机科学研究生复试上机测试题.zip

    华中科技大学计算机科学研究生复试上机测试题.zip

Global site tag (gtag.js) - Google Analytics