`
085567
  • 浏览: 220303 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

MongoDB数据库优化:Mongo Database Profiler

 
阅读更多

在MySQL中,慢查询日志是经常作为我 们优化数据库的依据,那在MongoDB中是否有类似的功能呢?答案是肯定的,那就是Mongo Database Profiler.不仅有,而且还有一些比MySQL的Slow Query Log更详细的信息。它就是我们这篇文章的主题。

  开启 Profiling 功能

  有两种方式可以控制 Profiling 的开关和级别,第一种是直接在启动参数里直接进行设置。

  启动MongoDB时加上–profile=级别 即可。

  也可以在客户端调用db.setProfilingLevel(级别) 命令来实时配置。可以通过db.getProfilingLevel()命令来获取当前的Profile级别。

  > db.setProfilingLevel(2);
  {"was" : 0 , "ok" : 1}
  > db.getProfilingLevel()

  上面斜体的级别可以取0,1,2 三个值,他们表示的意义如下:

  0 – 不开启

  1 – 记录慢命令 (默认为>100ms)

  2 – 记录所有命令

   Profile 记录在级别1时会记录慢命令,那么这个慢的定义是什么?上面我们说到其默认为100ms,当然有默认就有设置,其设置方法和级别一样有两种,一种是通过添 加–slowms启动参数配置。第二种是调用db.setProfilingLevel时加上第二个参数:

  db.setProfilingLevel( level , slowms )
  db.setProfilingLevel( 1 , 10 );

  查询 Profiling 记录

  与MySQL的慢查询日志不同,Mongo Profile 记录是直接存在系统db里的,记录位置 system.profile ,所以,我们只要查询这个Collection的记录就可以获取到我们的 Profile 记录了。

  > db.system.profile.find()
  {"ts" : "Thu Jan 29 2009 15:19:32 GMT-0500 (EST)" , "info" : "query test.$cmd ntoreturn:1 reslen:66 nscanned:0
  query: { profile: 2 } nreturned:1 bytes:50" , "millis" : 0}
  db.system.profile.find( { info: /test.foo/ } )
  {"ts" : "Thu Jan 29 2009 15:19:40 GMT-0500 (EST)" , "info" : "insert test.foo" , "millis" : 0}
  {"ts" : "Thu Jan 29 2009 15:19:42 GMT-0500 (EST)" , "info" : "insert test.foo" , "millis" : 0}
  {"ts" : "Thu Jan 29 2009 15:19:45 GMT-0500 (EST)" , "info" : "query test.foo ntoreturn:0 reslen:102 nscanned:2
  query: {} nreturned:2 bytes:86" , "millis" : 0}
  {"ts" : "Thu Jan 29 2009 15:21:17 GMT-0500 (EST)" , "info" : "query test.foo ntoreturn:0 reslen:36 nscanned:2
  query: { $not: { x: 2 } } nreturned:0 bytes:20" , "millis" : 0}
  {"ts" : "Thu Jan 29 2009 15:21:27 GMT-0500 (EST)" , "info" : "query test.foo ntoreturn:0 exception bytes:53" , "millis" : 88}

  列出执行时间长于某一限度(5ms)的 Profile 记录:

  > db.system.profile.find( { millis : { $gt : 5 } } )
  {"ts" : "Thu Jan 29 2009 15:21:27 GMT-0500 (EST)" , "info" : "query test.foo ntoreturn:0 exception bytes:53" , "millis" : 88}

  查看最新的 Profile 记录:

  db.system.profile.find().sort({$natural:-1})

  Mongo Shell 还提供了一个比较简洁的命令show profile,可列出最近5条执行时间超过1ms的 Profile 记录。

  Profile 信息内容详解:

  ts-该命令在何时执行.

  millis Time-该命令执行耗时,以毫秒记.

  info-本命令的详细信息.

  query-表明这是一个query查询操作.

  ntoreturn-本次查询客户端要求返回的记录数.比如, findOne()命令执行时 ntoreturn 为 1.有limit(n) 条件时ntoreturn为n.

  query-具体的查询条件(如x>3).

  nscanned-本次查询扫描的记录数.

  reslen-返回结果集的大小.

  nreturned-本次查询实际返回的结果集.

  update-表明这是一个update更新操作.

  fastmod-Indicates a fast modify operation. See Updates. These operations are normally quite fast.

  fastmodinsert – indicates a fast modify operation that performed an upsert.

  upsert-表明update的upsert参数为true.此参数的功能是如果update的记录不存在,则用update的条件insert一条记录.

  moved-表明本次update是否移动了硬盘上的数据,如果新记录比原记录短,通常不会移动当前记录,如果新记录比原记录长,那么可能会移动记录到其它位置,这时候会导致相关索引的更新.磁盘操作更多,加上索引更新,会使得这样的操作比较慢.

  insert-这是一个insert插入操作.

  getmore-这是一个getmore 操作,getmore通常发生在结果集比较大的查询时,第一个query返回了部分结果,后续的结果是通过getmore来获取的。

  MongoDB 查询优化

  如果nscanned(扫描的记录数)远大于nreturned(返回结果的记录数)的话,那么我们就要考虑通过加索引来优化记录定位了。

  reslen 如果过大,那么说明我们返回的结果集太大了,这时请查看find函数的第二个参数是否只写上了你需要的属性名。(类似 于MySQL中不要总是select *)

  对于创建索引的建议是:如果很少读,那么尽量不要添加索引,因为索引越多,写操作会越慢。如果读量很大,那么创建索引还是比较划算的。(和RDBMS一样,貌似是废话 -_-!!)

  MongoDB 更新优化

  如果写查询量或者update量过大的话,多加索引是会有好处的。以及~~~~(省略N字,和RDBMS差不多的道理)

  Use fast modify operations when possible (and usually with these, an index). See Updates.

  Profiler 的效率

  Profiling 功能肯定是会影响效率的,但是不太严重,原因是他使用的是system.profile 来记录,而system.profile 是一个capped collection 这种collection 在操作上有一些限制和特点,但是效率更高。

分享到:
评论

相关推荐

    深入讲解MongoDB的慢日志查询(profile)

    MongoDB的慢日志查询,或称为Database Profiler,是一个非常重要的工具,它允许开发者和数据库管理员监控并分析性能瓶颈,以优化数据库操作。在MySQL等关系型数据库中,慢查询日志同样起到了关键作用,而在NoSQL的...

    MongoDB 43 道面试题及答案.docx

    6. 分析器:MongoDB 数据库分析器显示的是针对数据库的每个操作的性能特征,如果使用 profiler 查询时,速度比实际速度慢。 7. 移动 moveChunk 目录下的旧文件:可以移动 moveChunk 目录中的旧文件,在正常的碎片...

    MongoDB 45 道面试题及答案.docx

    knowledge point 9: Profiler 在 MongoDB 中的作用 * MongoDB 数据库分析器显示针对数据库的每个操作的性能特征 * 您可以使用探查器找到比其慢的查询 knowledge point 10: 将旧文件移动到 moveChunk 目录中 * 是...

    ysoserial-master.zip

    ysoserial是一个用于生成利用不安全的Java对象反序列化的有效负载的概念验证工具。它包含一系列在常见Java库中发现的"gadget chains",可以在特定条件下利用执行不安全的反序列化操作的Java应用程序。ysoserial项目最初在2015年AppSecCali会议上提出,包含针对Apache Commons Collections(3.x和4.x版本)、Spring Beans/Core(4.x版本)和Groovy(2.3.x版本)的利用链

    zigbee CC2530无线自组网协议栈系统代码实现协调器与终端的TI Sensor实验和Monitor使用.zip

    1、嵌入式物联网单片机项目开发例程,简单、方便、好用,节省开发时间。 2、代码使用IAR软件开发,当前在CC2530上运行,如果是其他型号芯片,请自行移植。 3、软件下载时,请注意接上硬件,并确认烧录器连接正常。 4、有偿指导v:wulianjishu666; 5、如果接入其他传感器,请查看账号发布的其他资料。 6、单片机与模块的接线,在代码当中均有定义,请自行对照。 7、若硬件有差异,请根据自身情况调整代码,程序仅供参考学习。 8、代码有注释说明,请耐心阅读。 9、例程具有一定专业性,非专业人士请谨慎操作。

    YOLO算法-自卸卡车-挖掘机-轮式装载机数据集-2644张图像带标签-自卸卡车-挖掘机-轮式装载机.zip

    YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;

    Oracle10gDBA学习手册中文PDF清晰版最新版本

    **Oracle 10g DBA学习手册:安装Oracle和构建数据库** **目的:** 本章节旨在指导您完成Oracle数据库软件的安装和数据库的创建。您将通过Oracle Universal Installer (OUI)了解软件安装过程,并学习如何利用Database Configuration Assistant (DBCA)创建附加数据库。 **主题概览:** 1. 利用Oracle Universal Installer (OUI)安装软件 2. 利用Database Configuration Assistant (DBCA)创建数据库 **第2章:Oracle软件的安装与数据库构建** **Oracle Universal Installer (OUI)的运用:** Oracle Universal Installer (OUI)是一个图形用户界面(GUI)工具,它允许您查看、安装和卸载机器上的Oracle软件。通过OUI,您可以轻松地管理Oracle软件的安装和维护。 **安装步骤:** 以下是使用OUI安装Oracle软件并创建数据库的具体步骤:

    消防验收过程服务--现场记录表.doc

    消防验收过程服务--现场记录表.doc

    (4655036)数据库 管理与应用 期末考试题 数据库试题

    数据库管理\09-10年第1学期数据库期末考试试卷A(改卷参考).doc。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。

    YOLO算法-瓶纸盒合并数据集-3161张图像带标签-纸张-纸箱-瓶子.zip

    YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;

    职业暴露后的处理流程.docx

    职业暴露后的处理流程.docx

    Java Web开发短消息系统

    Java Web开发短消息系统

    java毕设项目之ssm基于java和mysql的多角色学生管理系统+jsp(完整前后端+说明文档+mysql+lw).zip

    项目包含完整前后端源码和数据库文件 环境说明: 开发语言:Java 框架:ssm,mybatis JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3 服务器:tomcat7

    批量导出多项目核心目录工具

    这是一款可以配置过滤目录及过滤的文件后缀的工具,并且支持多个项目同时输出导出,并过滤指定不需要导出的目录及文件后缀。 导出后将会保留原有的路径,并在新的文件夹中体现。

    【图像压缩】基于matlab GUI DCT图像压缩(含MAX MED MIN NONE)【含Matlab源码 9946期】.zip

    Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

    YOLO算法-挖掘机与火焰数据集-7735张图像带标签-挖掘机.zip

    YOLO算法-挖掘机与火焰数据集-7735张图像带标签-挖掘机.zip

    操作系统实验 Ucore lab5

    操作系统实验 Ucore lab5

    IMG_5950.jpg

    IMG_5950.jpg

    竞选报价评分表.docx

    竞选报价评分表.docx

    java系统,mysql、springboot等框架

    java系统,mysql、springboot等框架

Global site tag (gtag.js) - Google Analytics