`
csuyux
  • 浏览: 1955 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
最近访客 更多访客>>
社区版块
存档分类
最新评论

排序算法

阅读更多

插入排序
1.直接插入排序

一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:

  1. 从第一个元素开始,该元素可以认为已经被排序
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描
  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置
  4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
  5. 将新元素插入到该位置中
  6. 重复步骤2

实现:

Array.prototype.insert_sort=function(){
        var key;
        var t;
        for (j=1;j<this.length ;j++ )//从数组第二个元素开始遍历。
        {
               key=this[j];
               t=j-1;
               while (t>=0 && this[t]>key)
               {
                     this[t+1]=this[t];

                     t--;
                }

                this[t]=key;//如果遍历到的当前元素比其前一个元素大,则互换其位置。 
          }
          return this;
     }
如果目标是把n个元素的序列升序排列,那么采用插入排序存在最好情况和最坏情况。最好情况就是,序列已经是升序排列了,在这种情况下,需要进行的比较操作需(n-1)次即可。最坏情况就是,序列是降序排列,那么此时需要进行的比较共有n(n-1)/2次。插入排序的赋值操作是比较操作的次数减去(n-1)次。平均来说插入排序算法复杂度为O(n2)。因而,插入排序不适合对于数据量比较大的排序应用。但是,如果需要排序的数据量很小,例如,量级小于千,那么插入排序还是一个不错的选择。

 

2.希尔排序

原理:又称增量缩小排序。先将序列按增量划分为元素个数相同的若干组,使用直接插入排序法进行排序,然后不断缩小增量直至为1,最后使用直接插入排序完成排序。

要点:增量的选择以及排序最终以1为增量进行排序结束。

实现:

Void shellSort(Node L[],int d)

{

While(d>=1)//直到增量缩小为1

{

Shell(L,d);

d=d/2;//缩小增量

}

}

Void Shell(Node L[],int d)

{

Int i,j;

For(i=d+1;i<length;i++)

{

if(L[i]<L[i-d])

{

L[0]=L[i];

j=i-d;

While(j>0&&L[j]>L[0])

{

L[j+d]=L[j];//移动

j=j-d;//查找

}

L[j+d]=L[0];

}

}

}

 

交换排序

1.冒泡排序

原理:将序列划分为无序和有序区,不断通过交换较大元素至无序区尾完成排序。

要点:设计交换判断条件,提前结束以排好序的序列循环。

实现:

Void BubbleSort(Node L[])

{

Int i ,j;

Bool ischanged;//设计跳出条件

For(j=n;j<0;j--)

{

ischanged =false;

For(i=0;i<j;i++)

{

If(L[i]>L[i+1])//如果发现较重元素就向后移动

{

Int temp=L[i];

L[i]=L[i+1];

L[i+1]=temp;

Ischanged =true;

}

}

If(!ischanged)//若没有移动则说明序列已经有序,直接跳出

Break;

}

}

2.快速排序

原理:不断寻找一个序列的中点,然后对中点左右的序列递归的进行排序,直至全部序列排序完成,使用了分治的思想。

要点:递归、分治

实现:

 


选择排序

1.直接选择排序

原理:将序列划分为无序和有序区,寻找无序区中的最小值和无序区的首元素交换,有序区扩大一个,循环最终完成全部排序。

要点:

实现:

Void SelectSort(Node L[])

{

Int i,j,k;//分别为有序区,无序区,无序区最小元素指针

For(i=0;i<length;i++)

{

k=i;

For(j=i+1;j<length;j++)

{

If(L[j]<L[k])

k=j;

}

If(k!=i)//若发现最小元素,则移动到有序区

{

Int temp=L[k];

L[k]=L[i];

L[i]=L[temp];

}

 

}

}

2.堆排序

原理:利用大根堆或小根堆思想,首先建立堆,然后将堆首与堆尾交换,堆尾之后为有序区。

要点:建堆、交换、调整堆

实现:

Void HeapSort(Node L[])

{

BuildingHeap(L);//建堆(大根堆)

For(int i=n;i>0;i--)//交换

{

Int temp=L[i];

L[i]=L[0];

L[0]=temp;

Heapify(L,0,i);//调整堆

}

}

 


Void BuildingHeap(Node L[])

{ For(i=length/2 -1;i>0;i--)

Heapify(L,i,length);

}

归并排序

归并操作的过程如下:

  1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
  2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置
  3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
  4. 重复步骤3直到某一指针达到序列尾
  5. 将另一序列剩下的所有元素直接复制到合并序列尾

实现:

Array.prototype.mergeSort=function(array){
                var merge=function(left,right){
                                var final=[];
                                while (left.length  && right.length) {
                                        final.push(left[0] <= right[0] ? left.shift() : right.shift() );
                                }
                                return final.concat(left.concat(right));
                }//end of the merge

                if (this.length < 2) {
                        return this;
                }
                var _left=this.slice(0,parseInt(this.length/2));
                var _right=this.slice(parseInt(this.length/2));
                return merge(_left.mergeSort(),_right.mergeSort());
    }
 


基数排序

原理:将数字按位数划分出n个关键字,每次针对一个关键字进行排序,然后针对排序后的序列进行下一个关键字的排序,循环至所有关键字都使用过则排序完成。

要点:对关键字的选取,元素分配收集。

实现:

Void RadixSort(Node L[],length,maxradix)

{

Int m,n,k,lsp;

k=1;m=1;

Int temp[10][length-1];

Empty(temp); //清空临时空间

While(k<maxradix) //遍历所有关键字

{

For(int i=0;i<length;i++) //分配过程

{

If(L[i]<m)

Temp[0][n]=L[i];

Else

Lsp=(L[i]/m)%10; //确定关键字

Temp[lsp][n]=L[i];

n++;

}

CollectElement(L,Temp); //收集

n=0;

m=m*10;

k++;

}

}


本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/yexinghai/archive/2009/10/10/4649923.aspx

分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics