`

ETL

    博客分类:
  • java
 
阅读更多

ETL

 

对于数据仓库以及ETL的知识,我基本上是个门外汉。一切都得从头开始,记个笔记,方便自已了解学习进度。
    
    首先,我们来了解最基本的定义:
    嗯,也有人将ETL简单称为数据抽取。至少在未学习之前,领导告诉我的是,你需要做一个数据抽取的工具。
    其实呢,抽取是ETL中的关键环节,顾名思义,也就将数据从不同的数据源中抓取(复制)出来。
    太简单了!
    上面的解释无首无尾,有点象能让你吃饱的第七个烧饼,
    仔细一想,抽取是不可能单独存在,我们需要将与之关联的一些其它环节拿出来。

    于是,得到ETL的定义:
    将数据抽取(Extract)、转换(Transform)、清洗(Cleansing)、装载(Load)的过程。 
    好的,既然到了这一个层次,我们完全会进一步展开联想,引出上面这个抽象事件的前因后果,

    抽取的源在哪里? 
    装载的目的又是什么呢?

    抽取源:大多数情况下,可以认为是关系数据库,专业一点,就是事务处理系统(OLTP)。当然,广义一点,可能会是其它数据库或者是文件系统。
    目的地:OK,我们希望是数据仓库。数据仓库是啥?在学习之前,它对我来说是个抽象的怪物,看过一些简单的资料之后,才了解这个怪物一点都不怪。堆积用来分析的数据的仓库。是了,是用来分析的,于是,它区别于OLTP中的数据存储。

    然后,我们来看看为什么要ETL?
    在我看来,有两个原因。
    一:性能  将需要分析的数据从OLTP中抽离出来,使分析和事务处理不冲突。咦?这不是数据仓库的效果吗?是了,
数据仓库,大多数情况下,也就是通过ETL工具来生成地。
    二:控制  用户可以完全控制从OLTP中抽离出来的数据,拥有了数据,也就拥有了一切。
    嗯,OLAP分析,数据挖掘等等等……。

    最后,总结一下,
    从资料上看,ETL是一门大学问,对于大学问,实在有些怕怕,所以,我觉得应该停下来想一想,下一步我该干点啥?
    嗯,时不我待,我没有办法一切从头开始,
    是了,从应用出发,看看现在工作中,最急需的是什么?

    鸭子要变成一盘菜,并不是举手将之置于油锅之劳。 
    OK,要将生米变为熟饭,鸭子放上大盘,一堆废话之后,我得先看看厨房里都有了一些啥?

 

  ETL为数据仓库服务,数据仓库用于数据分析,数据分析属于BI系统的要干的事儿。


    一般中/小型ERP系统都会有不成熟的BI系统,为啥叫做不成熟?
    因为它们或者有报表分析功能,但不具有OLAP(在线分析),或者有OLAP,但却没有数据挖掘和深度分析。或者干脆,来个大集成,直接利用第三方工具来达到相应的目的。
    为什么会这样,究其原因,很多情况是因为没有自主的数据仓库,没有数据仓库,其它的做起来也就有些四不象了。而要建立数据仓库,首要的是:ETL。
    于是,需求就应运而生了。

    对了,BI是什么?OLAP是啥?什么又是数据挖掘?鉴于我只能解释其表面含义,我就不多说了。各位不妨找本数据仓库的书,翻翻前几页,一般就明白了。或者Google一把。

    我们捡当下最流行的BI应用:OLAP来说说它与ETL的关系。
    了解OLAP的人都知道,它的分析模型由事实表和维表组成。但往往OLTP系统中的数据库是为事务而建,而并不为分析而建,而为了BI去改动OLTP数据库是不现实,并且,很多情况下也基本上是不可能的(当然,有些公司把不可能的任务变成可能的,但这显然是一种很僵硬的做法)。
    这时候,ETL的作用就显出来了,它可以为OLAP服务,按业务主题提取分析模型进行数据抽取。
    (OLAP分析需要什么样的数据支持?可以参看一下OLAP的星型模型)。

    再说说数据挖掘:
    这个课题实在太大,相关的书藉有很多很多,我还得花时间慢慢去学习。简单的说,这涉及ERP业务和统计学的知识。现在我暂时还没开始相关学习,但它与ETL的关系却很明显。因为数据挖掘所要求的数据大都是高聚合的已处理的数据,所以,不管从获取难度和效率上来说,都不适合直接从OLTP中获取。
    同样,需要ETL来帮忙。

    因此,按本人粗浅的理解:
    ETL实在是: BI系统 设计开发,项目实施 之必备良药!

    有句名言讲得好:成为巨人不如站在巨人的肩膀上。
    如果想对ETL有详尽的了解,不妨先了解一下现有流行的ETL工具。

 

来至:http://blog.csdn.net/tiger119/archive/2007/01/14/1482648.aspx

 

// 

分享到:
评论

相关推荐

    Java分布式ETL框架

    Java分布式ETL(Extract, Transform, Load)框架是用于大数据处理的一种关键技术,它涉及从各种数据源抽取数据,经过转换处理后,加载到目标存储系统的过程。在Java中,实现分布式ETL可以利用多线程、分布式计算以及...

    传统数据仓库ETL设计报告

    ETL平台分为三个主要模块:ETL元数据驱动模块负责根据配置信息生成ETL作业,ETL调度模块配置调度并结合数据质量校验控制执行,而ETL元数据管理模块则用于管理和检索ETL配置信息。 2.1.2.2 ETL平台技术架构 技术...

    达梦ETL批量流程向导

    ### 达梦ETL批量流程向导:详细解析与应用指南 #### 一、引言 随着企业数据规模的不断增长以及对数据处理效率要求的提高,ETL(Extract, Transform, Load)技术成为了现代数据仓库建设中的核心环节之一。其中,...

    ETL Automation使用手册

    ETL Automation 使用手册 ETL Automation 是一个自动化的数据集成工具,旨在帮助用户快速高效地完成数据提取、转换和加载(ETL)过程。本手册将详细介绍 ETL Automation 的安装、配置、使用和管理。 ETL ...

    ETL工具 ,基于Kettle实现的Web版ETL工具

    ETL(Extract, Transform, Load)是数据仓库和大数据处理中的关键步骤,它涉及从不同来源提取数据,对其进行转换以适应特定需求,然后加载到目标系统。Kettle是一款开源的ETL工具,由Pentaho公司开发,因其强大的...

    ETL工具,开源,使用需要配置

    ETL(Extract, Transform, Load)是数据仓库领域中的关键过程,用于从各种源系统抽取数据,转换数据以满足特定需求,然后加载到目标数据库或数据仓库中。在这个主题中,我们将深入探讨ETL工具的开源特性以及配置使用...

    ETL架构师面试题.docx

    ETL架构师在数据仓库项目中扮演着至关重要的角色,负责设计和实施数据从源系统到数据仓库的高效、准确的转换流程。本篇主要讨论了几个与ETL架构师面试相关的知识点,包括逻辑数据映射、数据探索阶段、起始来源数据的...

    数据仓库ETL算法详解

    1. ETL的定义:是数据抽取(Extract)、转换(Transform)、清洗(Cleansing)、装载(Load)的过程。是构建数据仓库的重要一环,用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型,将数据...

    1、ETL工程师经典面试题.md

    5. 在 ETL过程中四个基本的过程分别是什么? 6. 从 ERP源系统中抽取数据最好的方法是什么? 7. 简述直接连接数据库和使用 ,ODBC连接数据库进行通讯的优缺点。 8. 什么是代理键?简述代理键替换管道如何工作。 9. ...

    《ETL数据整合和处理》教学大纲.pdf

    在这一背景下,ETL(Extract, Transform, Load)作为一种关键的数据处理技术,对于保证数据的质量和可用性起到了至关重要的作用。本文档《ETL数据整合和处理》教学大纲,旨在为大数据技术专业的学生们提供一门系统...

    面试ETL题总汇

    ### ETL面试题总汇知识点解析 #### 一、逻辑数据映射 **知识点1: 逻辑数据映射定义及作用** 逻辑数据映射(Logical Data Mapping)是一种用于描述源系统数据定义、目标数据仓库模型及其转换过程的技术文档。它是...

    支持国产ETL etl-engine 用go写的轻量级etl引擎 方便集成到各企业中

    【etl-engine】是一款由国内开发者使用Go语言编写的轻量级ETL(Extract, Transform, Load)引擎,旨在帮助用户快速构建ETL解决方案,降低集成到现有项目或产品生态中的技术门槛。它包含了三个主要组件:etl-engine...

    ETL系列专题2 ETL数据结构

    在ETL(抽取、转换、加载)过程中,数据结构的设计尤为重要,因为它直接影响ETL的性能、效率和可靠性。本章节将详细介绍数据结构的概念和在ETL中的应用,尤其是ETL架构设计中Staging Area(暂存区)的原则和常用数据...

    oracle,etl工程师--面试题锦集

    Oracle和ETL(Extract, Transform, Load)是IT行业中数据处理和数据库管理的两个关键领域。作为一位ETL工程师,你需要对数据的提取、转换和加载过程有深入的理解,并且熟悉Oracle数据库系统。以下是一些关于这两个...

    大数据分析技术 BI商业智能分析培训 久其ETL数据集成工具 ETL培训教程资料 第5节 公式体系和服务器端 共15页.pptx

    【大数据分析技术 BI商业智能分析培训】中的第五节主要探讨了久其ETL数据集成工具中的公式体系和服务器端的功能。ETL(Extract, Transform, Load)是数据仓库和大数据处理的关键步骤,它涉及从不同源提取数据,进行...

    The Data WarehouseETL Toolkit: Practical Techniques for

    在数据仓库领域,ETL(提取、转换、加载)过程是至关重要的环节。数据在成为信息之前,必须从各种来源中提取出来,经过清洗和整合,最后加载到数据仓库中。Ralph Kimball,作为全球数据仓库权威,与Joe Caserta共同...

    使用ETL把EXCEL导入到MySQL,并处理乱码问题

    ### 使用ETL将Excel导入MySQL并处理乱码问题 在数据处理领域,ETL(Extract, Transform, Load)工具被广泛应用于数据集成过程中,用于从不同的数据源提取数据、转换数据格式以及加载到目标系统中。本文将详细介绍...

    ETL规范.doc

    ETL 规范设计指南 ETL(Extract、Transform、Load)是数据集成的重要步骤,涉及到数据的抽取、转换和加载。为了确保 ETL 过程的高效性和可靠性,需要制定相应的规范和标准。本文档旨在提供一份完整的 ETL 规范设计...

    ETL详解.docx

    ETL 与大数据的关系紧密,因为大数据的处理往往涉及大量、多样化的数据整合,而这正是 ETL 技术的核心应用。随着大数据技术的发展,传统的 ETL 过程已经不能满足实时或近实时的数据处理需求。大数据环境下的 ETL ...

Global site tag (gtag.js) - Google Analytics