一、特征选择
二、分类方法
三、决策树
四、人工神经网络与遗传算法
五、支持向量机
六、图论与聚类方法
其它(待补)
***********************************
一、特征选择
[PPT]Feature Selection for Classification
[PPT]Feature Selection for Classification M.Dash, H.Liu
[PPT]Classification and Feature Selection
[PPT]Feature Saliency in Unsupervised Learning
[PPT]Feature Selection/Extraction for Classification Problems
[PPT]Dynamic Integration of Data Mining Methods Using Selection in a ...
[PPT]Data Visualization and Feature Selection: New Algorithms for ...
[PPT]Robust feature selection by mutual information distributions
[PPT]Dimensions
[PPT]WEKKEM: a study in Fractal Dimension and Dimensionality Reduction
二、分类方法
[PPT]Taxonomy Classification
[PPT]Linear Methods for Classification
[PPT]Descriptive Statistics
[PPT]Combining Classical Statistics and Data Mining in Tactical ...
[PPT]Enhanced classification using hyperlinks
[PPT]Classification Algorithms
[PPT]Classification
[PPT]Reading Report on “The Foundations of Cost-Sensitive Learning ...
[PPT]Classification and Prediction (3)
[PPT]4.3 Classification of Fuzzy Relation
[PPT]Classification & Data Mining
[PPT]Machine learning for classification
[PPT]Heuristic Search
[PPT]Comparing Classification Methods
[PPT]A Practical Algorithm to Find the Best Episode Patterns
[PPT]Taxonomy of Data-Mining/Knowledge Discovery Tasks
[PPT]Mining Frequent Patterns Without Candidate Generation
[PPT]KNOWLEDGE AND REASONING
[PPT]Comparisons of Capabilities of Data Mining Tools
[PPT]Uncertainty Reduction in Data Mining: A Case study for Robust ...
[PPT]Visualizing and Exploring Data
[PPT]An Integrated Approach to Decision Making under Uncertainty UCLA ...
[PPT]Mining Unusual Patterns in Data Streams: Methodologies and ...
[PPT]Learning: Nearest Neighbor
[PPT]Structured Principal Component Analysis
[PPT]Machine Learning through Probabilistic Models
[PPT]Advances in Bayesian Learning
[PPT]Using Discretization and Bayesian Inference Network Learning for ...
[PPT]Bayesian Optimization Algorithm, Decision Graphs, and Occam’s ...
[PPT]Bayesian Inference
[PPT]Text Mining Technique Overview and an Application to Anonymous ...
[PPT]Improving Text Classification Accuracy by Augmenting Labeled ...
[PPT]Text Mining Technique Overview and an Application to Anonymous ...
[PPT]Fast and accurate text classification
[PPT]On feature distributional clustering for text categorization
[PPT]Hierarchical Classification of Documents with Error Control
[PPT]A Study of Smoothing Methods for Language Models Applied to ...
三、决策树
[PPT]Decision Trees
[PPT]Decision Tree Classification
[PPT]Induction and Decision Trees
[PPT]AN INTRODUCTION TO DECISION TREES
[PPT]Decision Tree Construction
[PPT]Decision Tree Learning II
[PPT]Decision Tree Learning
[PPT]Decision trees and Rule-Based systems
[PPT]Learning with Identification Trees
[PPT]Decision Tree Post-Prunning Methods
[PPT]Decision Trees that Maximise Margins
[PPT]Introduction to Noise Handling in Decision Tree Induction
[PPT]A Fuzzy Decision Tree Induction Method for Fuzzy Data
[PPT]Fuzzy decision tree for continuous classification
[PPT]Artificial Intelligence Machine Learning I – Decision Tree ...
[PPT]OCToo: A Decision Tree Program
[PPT]Packet Classification using Hierarchical Intelligent Cuttings
[PPT]Rule Induction Using 1-R and ID3
[PPT]Inferring Rudimentary Rules
[PPT]Deriving Classification Rules
四、人工神经网络与遗传算法
[PPT]Neural Networks
[PPT]Artificial Neural Networks
[PPT]Neural Networks: An Introduction and Overview
[PPT]Evolving Multiple Neural Networks
[PPT]Introduction to Neural Networks
[PPT]Training and Testing Neural Networks
[PPT]Neuro-Fuzzy and Soft Computing
[PPT]A Comparison of a Self-Organizing Neural Network Vs. Traditional ...
[PPT]Breast Cancer Diagnosis via Neural Network Classification
[PPT]Effective Data Mining Using Neural Networks
[PPT]Machine learning and Neural Networks
[PPT]Artificial Neural Networks in Image Analysis
[PPT]Neural Miner
[PPT]Minimal Neural Networks
[PPT]Learning with Perceptrons and Neural Networks
[PPT]Feature Selection for Intrusion Detection Using SVMs and ANNs
[PPT]Artificial Neural Networks: Supervised Models
[PPT]Optimal linear combinations of Neural Networks
[PPT]Artificial Neural Networks for Supervised Learning in Data Mining
[PPT]Neural Computing
[PPT]Using Neural Networks for Clustering on RSI data and Related ...
[PPT]Classification and diagnostic prediction using artificial neural ...
[PPT]Continuous Hopfield network
[PPT]SURVEY ON ARTIFICIAL IMMUNE SYSTEM
[PPT]Data Mining with Neural Networks and Genetic Algorithms
[PPT]Fuzzy Systems, Neural Networks and Genetic Algorithms
[PPT]Evolving Multiple Neural Networks
[PPT]Genetic Algorithms
[PPT]Multi-objective Optimization Using Genetic Algorithms. ...
[PPT]Performance of Genetic Algorithms for Data Classification
[PPT]Evolutionary Algorithms
[PPT]Basic clustering concepts and clustering using Genetic Algorithm
五、支持向量机
[PPT]Support Vector Machine
[PPT]Support Vector Machines ch1. The Learning Methodology
[PPT]Kernel “Machine” Learning
[PPT]Relevance Vector Machine (RVM)
[PPT]Texture Segmentation using Support Vector Machines
[PPT]Large Margin Classifiers and a Medical Diagnostic Application
[PPT]C4.5 and SVM
[PPT]Support Vector Machines Project
[PPT]Scaling multi-class SVMs using inter-class confusion
[PPT]Mathematical Programming in Support Vector Machines
六、图论与聚类方法
[PPT]Clustering Algorithms
[PPT]Data Clustering: A Review
[PPT]Identifying Objects Using Cluster and Concept Analysis
[PDF]Clustering Through Decision Tree Construction
[PPT]Concept Learning II
[PPT]Minimum Partitioning and Clustering Algorithms
[PPT]5. Partitioning
[PPT]Constrained Graph Clustering
[PPT]Bi-clustering and co-similarity of documents and words using ...
[PPT]Biclustering of Expressoin Data
[PPT]Classification, clustering, similarity
[PPT]Clustering Using Random Walks
[PPT]Mining Association Rules
[PPT]An Overview of Clustering Methods
[PPT]Matching
[PPT]Faster Subtree Isomorphism
[PPT]Similarity Flooding
[PPT]Entangled Graphs Bipartite correlations in multipartite states
[PPT]Maximum Planar Subgraphs in Dense Graphs
[PPT]Matching in bipartite graphs
[PPT]Voting and Consensus Mechanisms
[PPT]Chapter 12 Assignments and Matchings
[PPT]Geometric Constraint Satisfaction Problem Adoption of algebraic ...
[PPT]The Weighted Clique Transversal Set Problem on Distance- ...
[PPT]A Better Algorithm for Finding Planar Subgraph
[PPT]HyperCuP
[PPT]The Disjoint Set ADT
[PPT]Trees, Hierarchies, and Multi-Trees Craig Rixford IS 247 – ...
[PPT]Hypergraph
[PPT]ADT Graph
[PPT][Kruksal’s Algorithm]
[PPT]Branch-and-Cut
[PPT]GRAPHS
[PPT]Graphs
[PPT]Trees
[PPT]Trees and Graphs
PPT]Graph Algorithms
[PPT]Graph Problems
[PPT]Shorter Path Algorithms
[PDF]Trees General Trees A Connected Graph A tree Rooted Trees Rooted ...
[PPT]Chapter 2 Graphs and Independence
[PPT]Graph Algorithms (or, The End Is Near)
[PPT]Greedy Graphs
[PPT]Integrating Optimization and Constraint Satisfaction
[PPT]Conceptual Graphs
[PPT]Guiding Inference with Conceptual Graphs
[PPT]Graph-Based Concept Learning
[PPT]Graphs and Digraphs
[PPT]The Graph Abstract Data Type
[PPT]The ERA Data Model: Entities, Relations and Attributes
[PPT]Stack and Queue Layouts of Directed Acyclic Graphs: Part I
[PPT]Minimum Cost Spanning Trees
[PPT]Chapter 13. Redundancy Elimination
[PPT]Graph Structures and Algorithms
[PPT]Hamiltonian Graphs
[PPT]Hamiltonian Cycles and paths
[PPT]Multilevel Algorithms
[PPT]Greedy and Randomized Local Search
[PPT]Network Capabilities
[PPT]Petri Nets ee249 Fall 2000
[PPT]Petri Nets
[PPT]Extracting hidden information from knowledge networks
[PPT]Interconnect Verification 1
[PPT]<a
分享到:
相关推荐
机器学习介绍PPT,适合新手入门了解机器学习阅读,也可作为授课ppt
《机器学习班PPT原件(全)(邹博)》是一份全面的机器学习课程资料,由知名专家邹博提供,旨在为初学者提供扎实的机器学习基础。这份资料包含了从入门到进阶的各种机器学习算法,对于想要系统学习机器学习的人员来...
贝叶斯统计机器学习ppt ...贝叶斯统计机器学习是机器学习领域中一个重要的分支,它提供了一种基于贝叶斯统计方法的机器学习方法。该方法可以应用于机器学习的各个方面,例如分类、回归、神经网络等。
机器学习(PPT92页).ppt
吴恩达机器学习全套PPT课件以及批注
机器学习 深度学习机器学习 深度学习机器学习 深度学习机器学习 深度学习机器学习 深度学习机器学习 深度学习机器学习 深度学习机器学习 深度学习机器学习 深度学习机器学习 深度学习机器学习 深度学习机器学习 深度...
总之,这个压缩包中的PPT是学习机器学习和人工智能的宝贵资料,无论你是初学者还是有一定经验的学习者,都能从中受益匪浅。通过吴恩达清晰易懂的讲解,你将能够掌握机器学习的核心概念和技术,并为进一步探索深度...
这是我们学校的机器学习PPT,希望大家喜欢
决策树是一种直观的监督学习方法,用于分类和回归任务。它通过一系列规则生成树状结构,每个内部节点代表一个特征,每个分支代表一个特征值,而叶节点则代表类别或数值预测。决策树的构建过程包括特征选择和剪枝,...
在这些机器学习的资料PPT中,涵盖了多种关键的算法和技术,这些都是理解和应用机器学习的基础。 首先,"贝叶斯学习.ppt"涉及的是贝叶斯统计和贝叶斯定理。贝叶斯学习是利用概率模型进行预测和决策的方法,它通过...
本压缩包文件包含的“机器学习算法PPT”提供了从基础到深度学习的全面教程,是学习者深入了解这两个领域的宝贵资源。 1. **机器学习基础**:机器学习是让计算机通过经验自我改进的技术,分为监督学习、无监督学习和...
《李航-统计学习方法PPT》是一套与《统计学习方法》这本书配套的教学资源,主要涵盖了机器学习领域的核心概念和方法。统计学习方法是现代机器学习研究的基础,它涉及了从数据中学习规律,构建预测模型的一系列理论和...
第10章提到了增强学习,这是一种通过与环境交互来学习最优策略的方法,如Q学习和深度Q网络(DQN)等。 第11章介绍了生物启发式优化算法,如遗传算法、粒子群优化、模拟退火等,这些算法在解决复杂优化问题时表现...
李宏毅 机器学习 PPT 李宏毅 机器学习 PPT
人工智能 机器学习。ppt 人工智能 机器学习。ppt 人工智能 机器学习。ppt
【机器学习算法PPT】是一份综合性的教育资源,旨在帮助初学者系统地理解和掌握机器学习领域的核心算法。这份PPT涵盖了14个主要的机器学习类别,为学习者提供了全面的知识框架,帮助他们逐步建立起对机器学习的深入...
模式识别与机器学习PPT课件.pptx
唐宇迪的机器学习课程资源包含了丰富的代码和PPT讲解,旨在深入浅出地解析机器学习这一复杂的主题。作为一门涵盖广泛技术的学科,机器学习在数据科学、人工智能领域扮演着核心角色。唐宇迪的课程可能涵盖了从基础...
1. 概述:深度学习是受人脑神经网络结构启发的一种机器学习方法,通过多层非线性变换对复杂模式进行学习。 2. 模型:包括前馈神经网络(FFN)、卷积神经网络(CNN)、循环神经网络(RNN)、长短时记忆网络(LSTM)...