O'REILLY最近刚刚出版了一本相当不错的OpenCV书籍,名字叫《Leaning OpenCV》,该书的作者是很出名的 Gary Bradski 和 Adrain Kaebler。Gary目前在斯坦福大学的人工智能实验室,是OpenCV的发起人。此书具有这样的“渊源”,自然不凡了。
欣闻此书的出版,获准将其翻译为中文,并从清华大学出版社得到样书,也算是幸事一件!
该书的特点大致是对OpenCV的很多基本算法函数都给出了详细的阐述,算法说明非常到位。在阅读的过程中,不但有“知其然”而且也有“知其所以然”的感受。
正在努力工作,希望尽快把中文稿提供给国内的读者!
先给出本书的目录,供大家欣赏!
====
Preface
Chapter 1. Overview
Section 1.1. What Is OpenCV?
Section 1.2. Who Uses OpenCV?
Section 1.3. What Is Computer Vision?
Section 1.4. The Origin of OpenCV
Section 1.5. Downloading and Installing OpenCV
Section 1.6. Getting the Latest OpenCV via CVS
Section 1.7. More OpenCV Documentation
Section 1.8. OpenCV Structure and Content
Section 1.9. Portability
Section 1.10. Exercises
Chapter 2. Introduction to OpenCV
Section 2.1. Getting Started
Section 2.2. First Program—Display a Picture
Section 2.3. Second Program—AVI Video
Section 2.4. Moving Around
Section 2.5. A Simple Transformation
Section 2.6. A Not-So-Simple Transformation
Section 2.7. Input from a Camera
Section 2.8. Writing to an AVI File
Section 2.9. Onward
Section 2.10. Exercises
Chapter 3. Getting to Know OpenCV
Section 3.1. OpenCV Primitive Data Types
Section 3.2. CvMat Matrix Structure
Section 3.3. IplImage Data Structure
Section 3.4. Matrix and Image Operators
Section 3.5. Drawing Things
Section 3.6. Data Persistence
Section 3.7. Integrated Performance Primitives
Section 3.8. Summary
Section 3.9. Exercises
Chapter 4. HighGUI
Section 4.1. A Portable Graphics Toolkit
Section 4.2. Creating a Window
Section 4.3. Loading an Image
Section 4.4. Displaying Images
Section 4.5. Working with Video
Section 4.6. ConvertImage
Section 4.7. Exercises
Chapter 5. Image Processing
Section 5.1. Overview
Section 5.2. Smoothing
Section 5.3. Image Morphology
Section 5.4. Flood Fill
Section 5.5. Resize
Section 5.6. Image Pyramids
Section 5.7. Threshold
Section 5.8. Exercises
Chapter 6. Image Transforms
Section 6.1. Overview
Section 6.2. Convolution
Section 6.3. Gradients and Sobel Derivatives
Section 6.4. Laplace
Section 6.5. Canny
Section 6.6. Hough Transforms
Section 6.7. Remap
Section 6.8. Stretch, Shrink, Warp, and Rotate
Section 6.9. CartToPolar and PolarToCart
Section 6.10. LogPolar
Section 6.11. Discrete Fourier Transform (DFT)
Section 6.12. Discrete Cosine Transform (DCT)
Section 6.13. Integral Images
Section 6.14. Distance Transform
Section 6.15. Histogram Equalization
Section 6.16. Exercises
Chapter 7. Histograms and Matching
Section 7.1. Basic Histogram Data Structure
Section 7.2. Accessing Histograms
Section 7.3. Basic Manipulations with Histograms
Section 7.4. Some More Complicated Stuff
Section 7.5. Exercises
Chapter 8. Contours
Section 8.1. Memory Storage
Section 8.2. Sequences
Section 8.3. Contour Finding
Section 8.4. Another Contour Example
Section 8.5. More to Do with Contours
Section 8.6. Matching Contours
Section 8.7. Exercises
Chapter 9. Image Parts and Segmentation
Section 9.1. Parts and Segments
Section 9.2. Background Subtraction
Section 9.3. Watershed Algorithm
Section 9.4. Image Repair by Inpainting
Section 9.5. Mean-Shift Segmentation
Section 9.6. Delaunay Triangulation, Voronoi Tesselation
Section 9.7. Exercises
Chapter 10. Tracking and Motion
Section 10.1. The Basics of Tracking
Section 10.2. Corner Finding
Section 10.3. Subpixel Corners
Section 10.4. Invariant Features
Section 10.5. Optical Flow
Section 10.6. Mean-Shift and Camshift Tracking
Section 10.7. Motion Templates
Section 10.8. Estimators
Section 10.9. The Condensation Algorithm
Section 10.10. Exercises
Chapter 11. Camera Models and Calibration
Section 11.1. Camera Model
Section 11.2. Calibration
Section 11.3. Undistortion
Section 11.4. Putting Calibration All Together
Section 11.5. Rodrigues Transform
Section 11.6. Exercises
Chapter 12. Projection and 3D Vision
Section 12.1. Projections
Section 12.2. Affine and Perspective Transformations
Section 12.3. POSIT: 3D Pose Estimation
Section 12.4. Stereo Imaging
Section 12.5. Structure from Motion
Section 12.6. Fitting Lines in Two and Three Dimensions
Section 12.7. Exercises
Chapter 13. Machine Learning
Section 13.1. What Is Machine Learning
Section 13.2. Common Routines in the ML Library
Section 13.3. Mahalanobis Distance
Section 13.4. K-Means
Section 13.5. Na?ve/Normal Bayes Classifier
Section 13.6. Binary Decision Trees
Section 13.7. Boosting
Section 13.8. Random Trees
Section 13.9. Face Detection or Haar Classifier
Section 13.10. Other Machine Learning Algorithms
Section 13.11. Exercises
Chapter 14. OpenCV's Future
Section 14.1. Past and Future
Section 14.2. Directions
Section 14.3. OpenCV for Artists
Section 14.4. Afterword
Chapter 15. Bibliography
分享到:
相关推荐
中文版的learning opencv. 一共12章
《Learning OpenCV中文版》是一本专为中文读者编写的关于OpenCV库的教程书籍,旨在帮助读者深入了解和掌握OpenCV在计算机视觉领域的应用。OpenCV(开源计算机视觉库)是一个强大的工具集,广泛用于图像处理、机器...
《Learning OpenCV 中文版》是一本面向初学者和进阶者的计算机视觉技术教程,由中国的于仕琪和刘瑞祯两位专家翻译自英文原著。这本书深入浅出地介绍了OpenCV库的使用,旨在帮助读者理解和掌握如何利用OpenCV进行图像...
Learning OpenCV中文版 第3章练习题2-8的工程文件 里面含有后面习题的工程文件 内容都亲自测过,可行 大部分来源于网页相关资源 在VS2010环境下,亲自测试可正确运行的工程文件。自己使用只需要正确配置Opencv即可
学习opencv中文版,是一本经典的opencv入门作品,比较全面的介绍了opencv这一计算机视觉开放库的基本内容以及应用。
《Learning OpenCV 3》是2018年出版的英文版教程,专注于介绍OpenCV 3这个强大的计算机视觉库的使用。OpenCV(开源计算机视觉库)是一个跨平台的库,包含了众多计算机视觉、图像处理和机器学习的算法,广泛应用于...
《OpenCV中文手册》是为中文用户特别准备的,它以简洁明了的语言解释了OpenCV的各项功能和用法。这本手册通常会包括OpenCV的主要类和函数介绍,以及实例代码,帮助初学者快速上手。在学习过程中,你可以通过查阅中文...
《Learning OpenCV中文版》是深入理解计算机视觉领域开源库OpenCV的重要教材,它为读者提供了丰富的实践案例和练习题,以帮助读者更好地掌握OpenCV的使用技巧。本压缩包包含的是第4章的部分练习题的工程文件,具体...
本资源集合包含了Learning OpenCV中文版第三章的多个练习题目的工程文件,涵盖了从基础操作到进阶应用的多个方面。这些文件经过验证,确保了代码的可行性和实用性,旨在帮助学习者通过实际操作来巩固理论知识。 ...
Learning opencv 源代码,Learning opencv 源代码,Learning opencv 源代码
( Learning OpenCV 3 计算机视觉使用C++英文第三版高清.pdf
Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library 是一本由浅入深介绍Opencv3 计算机视觉库使用的专业书籍。书中详细介绍了opencv3安装及各个模块的使用,此书在旧版基本上做了大量修改,以适应...
1、Learning OpenCV 3 Application 英文原版【带目录,无水印】 2、Build, create, and deploy your own computer vision applications with the power of OpenCV 3、本资源转载自网络,如有侵权,请联系上传者或...
《Learning OpenCV 英文版》是一本专为想要深入理解和掌握计算机视觉库OpenCV而设计的专业书籍。OpenCV(开源计算机视觉库)是一个强大的工具集,广泛应用于图像处理、机器学习以及视频分析等领域。这本书提供了全面...