摘要: 首先我们简单回顾下整个写入流程 client api ==> RPC ==> server IPC ==> RPC queue ==> RPC handler ==> write WAL ==> write memstore ==> flush to filesystem 整个写入流程从客户端调用API开始,数据会通过protobuf编码成一个请求,通过scoket实现的IPC模块被送达server的RPC队列中。
首先我们简单回顾下整个写入流程
client api ==> RPC ==> server IPC ==> RPC queue ==> RPC handler ==> write WAL ==> write memstore ==> flush to filesystem
整个写入流程从客户端调用API开始,数据会通过protobuf编码成一个请求,通过scoket实现的IPC模块被送达server的RPC队列中。最后由负责处理RPC的handler取出请求完成写入操作。写入会先写WAL文件,然后再写一份到内存中,也就是memstore模块,当满足条件时,memstore才会被flush到底层文件系统,形成HFile。
当写入过快时会遇见什么问题?
写入过快时,memstore的水位会马上被推高。
你可能会看到以下类似日志:
RegionTooBusyException: Above memstore limit, regionName=xxxxx ...
这个是Region的memstore占用内存大小超过正常的4倍,这时候会抛异常,写入请求会被拒绝,客户端开始重试请求。当达到128M的时候会触发flush memstore,当达到128M * 4还没法触发flush时候会抛异常来拒绝写入。两个相关参数的默认值如下:
hbase.hregion.memstore.flush.size=128M hbase.hregion.memstore.block.multiplier=4
或者这样的日志:
regionserver.MemStoreFlusher: Blocking updates on hbase.example.host.com,16020,1522286703886: theglobal memstore size 1.3 G is >= than blocking 1.3 G size regionserver.MemStoreFlusher: Memstore isabove high water mark and block 528ms
这是所有region的memstore内存总和开销超过配置上限,默认是配置heap的40%,这会导致写入被阻塞。目的是等待flush的线程把内存里的数据flush下去,否则继续允许写入memestore会把内存写爆
hbase.regionserver.global.memstore.upperLimit=0.4# 较旧版本,新版本兼容 hbase.regionserver.global.memstore.size=0.4# 新版本
当写入被阻塞,队列会开始积压,如果运气不好最后会导致OOM,你可能会发现JVM由于OOM crash或者看到如下类似日志:
ipc.RpcServer: /192.168.x.x:16020 is unable to read call parameter from client 10.47.x.x java.lang.OutOfMemoryError: Java heap space
HBase这里我认为有个很不好的设计,捕获了OOM异常却没有终止进程。这时候进程可能已经没法正常运行下去了,你还会在日志里发现很多其它线程也抛OOM异常。比如stop可能根本stop不了,RS可能会处于一种僵死状态。
如何避免RS OOM?
一种是加快flush速度:
hbase.hstore.blockingWaitTime = 90000 ms hbase.hstore.flusher.count = 2 hbase.hstore.blockingStoreFiles = 10
当达到hbase.hstore.blockingStoreFiles配置上限时,会导致flush阻塞等到compaction工作完成。阻塞时间是hbase.hstore.blockingWaitTime,可以改小这个时间。hbase.hstore.flusher.count可以根据机器型号去配置,可惜这个数量不会根据写压力去动态调整,配多了,非导入数据多场景也没用,改配置还得重启。
同样的道理,如果flush加快,意味这compaction也要跟上,不然文件会越来越多,这样scan性能会下降,开销也会增大。
hbase.regionserver.thread.compaction.small = 1 hbase.regionserver.thread.compaction.large = 1
增加compaction线程会增加CPU和带宽开销,可能会影响正常的请求。如果不是导入数据,一般而言是够了。好在这个配置在云HBase内是可以动态调整的,不需要重启。
上述配置都需要人工干预,如果干预不及时server可能已经OOM了,这时候有没有更好的控制方法?
hbase.ipc.server.max.callqueue.size = 1024 * 1024 * 1024# 1G
直接限制队列堆积的大小。当堆积到一定程度后,事实上后面的请求等不到server端处理完,可能客户端先超时了。并且一直堆积下去会导致OOM,1G的默认配置需要相对大内存的型号。当达到queue上限,客户端会收到CallQueueTooBigException 然后自动重试。通过这个可以防止写入过快时候把server端写爆,有一定反压作用。线上使用这个在一些小型号稳定性控制上效果不错。
阅读更多干货好文,请关注扫描以下二维码:
相关推荐
Hadoop之Hbase从入门到精通,通过此文档可以快速了解Hbase
《Hadoop之HBase从入门到精通》是一个深入学习Hadoop和HBase的全面指南,旨在帮助初学者和有经验的开发者快速掌握这两个强大的大数据处理工具。Hadoop是Apache软件基金会开发的一个开源分布式计算框架,它允许在廉价...
《大数据云计算技术系列:Hadoop之Hbase从入门到精通》 HBase,全称Hadoop Database,是一款基于Hadoop生态系统的分布式列式存储系统,旨在处理海量结构化数据。它借鉴了Google Bigtable的设计思想,但开源并适应了...
Hadoop之HBase从入门到精通 本文将详细介绍HBase技术,从基础概念到高级应用,旨在帮助读者快速掌握HBase技术。 一、HBase技术介绍 HBase是Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储...
"Hadoop之Hbase从入门到精通" HBase 是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用 HBase 技术可在廉价 PC Server 上搭建起大规模结构化存储集群。HBase 是 Google Bigtable 的开源实现,类似 ...
### HBase从入门到精通 #### 一、HBase技术介绍 ##### 1. HBase简介 HBase(Hadoop Database)是一种分布式列族数据库,它具有高可靠性、高性能、可伸缩性等特点,适用于搭建大规模结构化存储集群。与传统的...
### HBase从入门到精通——关键技术点解析 #### 一、HBase技术概览 **HBase**(Hadoop Database)是一种分布式、可扩展的NoSQL数据库系统,它基于Google Bigtable论文的思想构建而成,并且作为Apache Hadoop生态...
《大数据云计算技术系列:Hadoop之HBase从入门到精通》是一份全面深入的教程,旨在帮助读者理解和掌握HBase这一强大的分布式列式数据库。HBase是构建在Hadoop生态系统之上,专门处理大规模数据的非关系型数据库。这...
### HBase从入门到编程——核心知识点解析 #### 一、HBase简介 **HBase** 是一个构建在 **Hadoop** 分布式文件系统 (HDFS) 之上的分布式、可扩展、高性能的列族数据库。它为海量数据提供了灵活的存储方式,并支持...
但是,需要注意的是,对于一些Online应用,RegionServer从宕机到恢复时间本身就很短的(网络闪断、crash等故障,运维可快速介入),如果调低超时时间,反而会得不偿失。 二、RegionServer的请求处理IO线程数 ...
根据提供的文件信息,“hbase入门到精通.txt”,我们可以推断出文档主要涵盖了HBase的相关知识。下面将基于这个假设来生成一系列与HBase相关的知识点。 ### HBase简介 HBase是一个分布式、多维、排序的映射表,该...
在Java编程环境中,操作HBase并将其数据写入HDFS(Hadoop Distributed File System)是一项常见的任务,特别是在大数据处理和分析的场景下。本篇将详细介绍如何使用Java API实现这一功能,以及涉及到的关键技术和...
HBase是Apache旗下一个高可靠性、高性能、面向列、可伸缩的分 布式存储系统。利用HBase技术可在廉价的PC服务器上搭建大规模的存 储化集群,使用HBase可以对数十亿级别的大数据进行实时性的高性能 读写,在满足高性能...
hadoop 第三版-权威指南-从入门到精通-中文pdf版本。介绍hadoop分布式文件系统,MapReduce的工作原理,并手把手教你如何构建hadoop集群,同时附带介绍了pig,hive,hbase,zookeeper,sqoop等hadoop家族的开源软件。
spark学习 hadoop hive hbase flink教程 linux 从入门到精通 一个开源、成体系的大数据学习教程。spark学习 hadoop hive hbase flink教程 linux 从入门到精通 一个开源、成体系的大数据学习教程。spark学习 hadoop ...