import java.io.File;
import org.joone.engine.FullSynapse;
import org.joone.engine.LinearLayer;
import org.joone.engine.Monitor;
import org.joone.engine.SigmoidLayer;
import org.joone.engine.learning.TeachingSynapse;
import org.joone.io.FileInputSynapse;
import org.joone.io.FileOutputSynapse;
import org.joone.io.InputSwitchSynapse;
import org.joone.net.NeuralNet;
public class Main {
private NeuralNetnnet = null;
private FileInputSynapse inputSynapse1, inputSynapse2, inputSynapse3;
private FileInputSynapse desiredSynapse1, desiredSynapse2, desiredSynapse3;
// private MemoryOutputSynapse outputSynapse;
private InputSwitchSynapse inputSw, desiredSw;
private static String inputFile = "src/test.txt";
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Main m = new Main();
m.test();
m.train();
}
public void train() {
// get the monitor object to train or feed forward
Monitor monitor = nnet.getMonitor();
// set the monitor parameters
monitor.setLearningRate(0.8);
monitor.setMomentum(0.3);
monitor.setTrainingPatterns(4);
monitor.setTotCicles(1000);
monitor.setLearning(true);
nnet.addNeuralNetListener(new Test());
interrogate();
interrogate();
interrogate();
}
private void interrogate() {
// neuralNet is an instance of NeuralNet
Monitor monitor=nnet.getMonitor();
monitor.setTotCicles(1);
monitor.setLearning(false);
FileOutputSynapse output=new FileOutputSynapse();
// set the output synapse to write the output of the net
output.setFileName("src/xorOut.txt");
// inject the input and get the output
if(nnet!=null) {
nnet.addOutputSynapse(output);
System.out.println(nnet.check());
nnet.start();
monitor.Go();
nnet.join();
}
}
public void test() {
LinearLayerinput = new LinearLayer();
SigmoidLayerhidden = new SigmoidLayer();
SigmoidLayeroutput = new SigmoidLayer();
input.setRows(2);
hidden.setRows(3);
output.setRows(1);
input.setLayerName("inputLayer");
hidden.setLayerName("hiddenLayer");
output.setLayerName("outputLayer");
FullSynapse synapse_IH = new FullSynapse();/* input -> hidden conn. */
FullSynapse synapse_HO = new FullSynapse();/* hidden -> output conn. */
input.addOutputSynapse(synapse_IH);
hidden.addInputSynapse(synapse_IH);
hidden.addOutputSynapse(synapse_HO);
output.addInputSynapse(synapse_HO);
inputSynapse1 = new FileInputSynapse();
inputSynapse2 = new FileInputSynapse();
inputSynapse3 = new FileInputSynapse();
inputSynapse1.setInputFile(new File(inputFile));
inputSynapse1.setName("input1");
inputSynapse1.setAdvancedColumnSelector("1-2");
inputSynapse1.setFirstRow(1);
inputSynapse1.setLastRow(4);
inputSynapse2.setInputFile(new File(inputFile));
inputSynapse2.setName("input2");
inputSynapse2.setAdvancedColumnSelector("1-2");
inputSynapse2.setFirstRow(2);
inputSynapse2.setLastRow(3);
inputSynapse3.setInputFile(new File(inputFile));
inputSynapse3.setName("input3");
inputSynapse3.setAdvancedColumnSelector("1-2");
inputSynapse3.setFirstRow(4);
inputSynapse3.setLastRow(4);
inputSw = new InputSwitchSynapse();
inputSw.addInputSynapse(inputSynapse1);
inputSw.addInputSynapse(inputSynapse2);
inputSw.addInputSynapse(inputSynapse3);
input.addInputSynapse(inputSw);
// The Trainer and its desired output
desiredSynapse1 = new FileInputSynapse();
desiredSynapse2 = new FileInputSynapse();
desiredSynapse3 = new FileInputSynapse();
desiredSynapse1.setInputFile(new File(inputFile));
desiredSynapse1.setName("desired1");
desiredSynapse1.setAdvancedColumnSelector("3");
desiredSynapse1.setFirstRow(1);
desiredSynapse1.setLastRow(4);
desiredSynapse2.setInputFile(new File(inputFile));
desiredSynapse2.setName("desired2");
desiredSynapse2.setAdvancedColumnSelector("3");
desiredSynapse2.setFirstRow(2);
desiredSynapse2.setLastRow(3);
desiredSynapse3.setInputFile(new File(inputFile));
desiredSynapse3.setName("desired3");
desiredSynapse3.setAdvancedColumnSelector("3");
desiredSynapse3.setFirstRow(4);
desiredSynapse3.setLastRow(4);
desiredSw = new InputSwitchSynapse();
desiredSw.addInputSynapse(desiredSynapse1);
desiredSw.addInputSynapse(desiredSynapse2);
desiredSw.addInputSynapse(desiredSynapse3);
TeachingSynapse trainer = new TeachingSynapse();
trainer.setDesired(desiredSw);
// Now we add this structure to a NeuralNet object
nnet = new NeuralNet();
nnet.addLayer(input, NeuralNet.INPUT_LAYER);
nnet.addLayer(hidden, NeuralNet.HIDDEN_LAYER);
nnet.addLayer(output, NeuralNet.OUTPUT_LAYER);
nnet.setTeacher(trainer);
output.addOutputSynapse(trainer);
}
}
import org.joone.engine.Monitor;
import org.joone.engine.NeuralNetEvent;
import org.joone.engine.NeuralNetListener;
public class Test implements NeuralNetListener {
@Override
public void cicleTerminated(NeuralNetEvent arg0) {
// TODO Auto-generated method stub
}
@Override
public void errorChanged(NeuralNetEvent e) {
// TODO Auto-generated method stub
Monitor mon = (Monitor)e.getSource();
System.out.println("Cycle: "+(mon.getTotCicles()-mon.getCurrentCicle())+" RMSE:"+mon.getGlobalError());
}
@Override
public void netStarted(NeuralNetEvent arg0) {
// TODO Auto-generated method stub
System.out.println("Training...");
}
@Override
public void netStopped(NeuralNetEvent arg0) {
// TODO Auto-generated method stub
System.out.println("Stopped");
}
@Override
public void netStoppedError(NeuralNetEvent arg0, String arg1) {
// TODO Auto-generated method stub
}
}
分享到:
相关推荐
7. **示例与应用**:Joone提供了示例代码,展示了如何创建和训练神经网络,以及如何将它们应用于实际问题。这些示例有助于初学者快速上手,并理解神经网络在不同场景下的应用。 总结来说,Joone.jar是Java开发人员...
2. **Joone Engine**:Joone Engine是一个基于Java的神经网络开发平台,它允许开发者创建和训练自定义的神经网络模型。Joone Engine提供了丰富的API,可以方便地创建、连接神经元、设置学习算法等,支持前馈型、反馈...
Java开源神经网络框架JOONE是面向Java开发人员的高级工具,它允许用户构建、训练和应用神经网络模型。JOONE(Java Object Oriented Neural Engine)是基于对象编程的,提供了丰富的API来支持神经网络的创建和操作。...
Joone是一个基于Java语言的开源项目,专注于神经网络的快速开发。该项目托管在SourceForge上,为开发者提供了一个强大而灵活的平台,用于构建、训练和应用神经网络模型。源码包"joone.zip_joone"包含了JOONE项目的...
Joone框架的核心是其神经网络实现,它允许开发人员构建和训练各种神经网络模型。神经网络是一种模拟人脑神经元结构的计算模型,广泛应用于图像识别、语音识别、自然语言处理、推荐系统等多个领域。Joone可能提供了对...
以下是一个简单的JOONE程序示例,展示了如何构建神经网络并进行训练: 1. 首先,创建输入层、隐藏层和输出层: ```java SigmoidLayer input = new SigmoidLayer(); SigmoidLayer hidden = new SigmoidLayer(); ...