- 浏览: 63467 次
- 性别:
- 来自: 杭州
最新评论
hadoop是目前比较流程的分布式计算平台,虽然安装和使用方法官方网站介绍的比较详细,但是其中细节还是挺多的,稍不注意就要走很多弯路,希望通过本文的介绍,大家能够在很短的时间内能将hadoop跑起来。 由于公司云梯用的是0.19.2版本的,所以下面就以这个版本为例,而没有采用目前最新的0.21版本。
hadoop官方网站地址:http://hadoop.apache.org
可以用以下三种支持的模式中的一种启动Hadoop集群:
•单机模式
•伪分布式模式
•完全分布式模式
单机和伪分布模式只需要一台机器就可以完成,下面我们先来学习这两种模式。
hadoop目前只有linux版本,所以你需要一台linux系统的服务器,可以跟我一样用虚拟机,而且需要先安装好jdk。我的服务器版本是centos 5.6,自己将jdk安装到了/usr/java/jdk1.6.0_25。下面我们来下载并配置hadoop运行环境。
1.单机模式
我这台机器的ip地址是:192.168.218.128,为了方便,我将这台机器的hostname改成了hd128,这样以后需要配置的地方都是用hd128了,修改方法是编辑文件/proc/sys/kernel/hostname。然后修改下hosts文件,将 192.168.218.128 hd128也加入进来吧。为了方便,将所用的windows机器hosts也添加下这个配置,因为以后要用浏览器访问hadoop的服务,查看hadoop的运行状况。
注意:下面配置中涉及到hd128的地方,你需要修改成你自己相应的配置。
cd /data wget http://archive.apache.org/dist/hadoop/core/hadoop-0.19.2/hadoop-0.19.2.tar.gz tar xf hadoop-0.19.2.tar.gz mv hadoop-0.19.2 hadoop
然后修改配置文件/data/hadoop/conf/hadoop-env.sh,将JAVA_HOME的值为jdk安装目录,如下:
export JAVA_HOME=/usr/java/jdk1.6.0_25
下面的实例将已解压的conf 目录拷贝作为输入,查找并显示匹配给定正则表达式的条目。输出写入到指定的output目录。
mkdir input //向input目录放置一些待分析的xml文件 cp conf/*.xml input //执行hadoop-0.19.2-examples.jar这个jar文件,将input目录所有的文件中匹配'dfs[a-z.]+'的条目,输出到output目录 bin/hadoop jar hadoop-0.19.2-examples.jar grep input output 'dfs[a-z.]+'
下面看看程序运行结果,可以看到所有匹配'dfs[a-z.]+'的字符串及其匹配的次数。
cat output/* [root@hd128 hadoop]# cat output/* 3 dfs. 3 dfs.name.dir 1 dfs.https.address 1 dfs.access.time.precision 1 dfs.balance.bandwidth 1 dfs.block.size 1 dfs.blockreport.initial 1 dfs.blockreport.interval 1 dfs.client.block.write.retries 1 dfs.data.dir 1 dfs.datanode.address 1 dfs.datanode.dns.interface 1 dfs.datanode.dns.nameserver 1 dfs.datanode.du.reserved 1 dfs.datanode.handler.count 1 dfs.datanode.http.address 1 dfs.datanode.https.address 1 dfs.datanode.ipc.address 1 dfs.default.chunk.view.size 1 dfs.df.interval 1 dfs.heartbeat.interval 1 dfs.hosts 1 dfs.hosts.exclude 1 dfs.http.address 1 dfs.impl 1 dfs.max.objects 1 dfs.name.edits.dir 1 dfs.namenode.decommission.interval 1 dfs.namenode.decommission.interval. 1 dfs.namenode.decommission.nodes.per.interval 1 dfs.namenode.handler.count 1 dfs.namenode.logging.level 1 dfs.permissions 1 dfs.permissions.supergroup 1 dfs.replication 1 dfs.replication.consider 1 dfs.replication.interval 1 dfs.replication.max 1 dfs.replication.min 1 dfs.replication.min. 1 dfs.safemode.extension 1 dfs.safemode.threshold.pct 1 dfs.secondary.http.address 1 dfs.support.append 1 dfs.web.ugi
2.伪分布式模式
Hadoop可以在单节点上以所谓的伪分布式模式运行,此时每一个Hadoop守护进程都作为一个独立的Java进程运行。
伪分布式模式需要免密码ssh设置,确认能否不输入口令就用ssh登录localhost:
ssh localhost
如果不输入口令就无法用ssh登陆localhost,执行下面的命令(注意:只有拥有root权限的用户才能执行下面命令):
ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
然后修改conf/hadoop-site.xml,注意,官方教程有点错误:<value>localhost:9000</value>,这个地址必须带上hdfs://,不然后面会报错的。另外,dfs.name.dir配置的路径/data/hadoopdata/NameData需要自己手动创建下,不然也会报错的。
<configuration> <property> <name>fs.default.name</name> <value>hdfs://hd128:9090</value> </property> <property> <name>mapred.job.tracker</name> <value>hdfs://hd128:9091</value> </property> <property> <name>dfs.replication</name> <value>1</value> </property> <property> <name>dfs.name.dir</name> <value>/data/hadoopdata/NameData</value> </property> <property> <name>hadoop.tmp.dir</name> <value>/data/hadoopdata/temp</value> </property> </configuration>
配置完成后就可以测试下伪分布式模式运行的hadoop集群了。
格式化一个新的分布式文件系统:
bin/hadoop namenode -format
启动Hadoop守护进程:
bin/start-all.sh
Hadoop守护进程的日志写入到 ${HADOOP_LOG_DIR} 目录 (默认是 ${HADOOP_HOME}/logs).如果启动有错误,可以在这些日志文件看到更详细的错误信息。
浏览NameNode和JobTracker的网络接口,它们的地址默认为:
•NameNode - http://hd128:50070/
•JobTracker - http://hd128:50030/
下面我们来使用伪分布模式做点事情。
首先将输入文件拷贝到分布式文件系统,下面命令将本地的conf目录文件拷贝到hdfs的input目录。
bin/hadoop fs -put conf input
下面运行程序对input目录的文件进行解析,找到所有符合'dfs[a-z.]+'的行。
[root@hd128 hadoop]# bin/hadoop jar hadoop-*-examples.jar grep input output 'dfs[a-z.]+' 11/06/16 15:23:23 INFO mapred.FileInputFormat: Total input paths to process : 10 11/06/16 15:23:24 INFO mapred.JobClient: Running job: job_201106161520_0001 11/06/16 15:23:25 INFO mapred.JobClient: map 0% reduce 0% 11/06/16 15:24:05 INFO mapred.JobClient: map 9% reduce 0% 11/06/16 15:25:30 INFO mapred.JobClient: map 9% reduce 3% 11/06/16 15:25:32 INFO mapred.JobClient: map 27% reduce 3% 11/06/16 15:26:37 INFO mapred.JobClient: map 27% reduce 9%
可以看到控制显示的map和reduce的进度,这时候通过浏览器查看NameNode和JobTracker的运行状态分别如下图所示:
等map-reduce程序运行完毕,我们在hdfs文件系统上看看程序的运行结果:
bin/hadoop fs -cat output/part-00000
可以看到跟单机运行的结果是一样的。
完成全部操作后,停止守护进程:
bin/stop-all.sh
3.完全分布式模式
为了在完全分布式模式下运行,我弄了三个centos虚拟机,ip分别是 192.168.218.128,192.168.218.129,192.168.218.130,hostname分别设置为 hd128,hd129,hd130, hosts文件将这些都配置进去了,这样以后就可以直接通过hostname访问到了。
我准备将hd128这台机器做为master(NameNode和JobTracker),hd129和hd130都做为slave机器(DataNode和TaskTracker)。
由于master和所有的slave之间是需要使用ssh协议进行通讯的,所以每两台之间,以及每台对自己都必须做到可以无密码ssh访问。上面已经介绍了怎样对自己无密码ssh访问,下面再说下怎样做到两台机器之间无密码访问,我们以hd128和hd129之间为例:
首先在hd128上生成一个公钥,并拷贝到hd129上:
ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa scp ~/.ssh/id_dsa.pub root@hd129:/tmp
然后在hd129上,将这个公钥加入到权限控制文件中:
cat /tmp/id_dsa.pub >> ~/.ssh/authorized_keys
经过上面的步骤,hd128对hd129的ssh访问就不需要输入密码了,依照上面的方法,将hd128,hd129,hd130两两之间都弄好无密码访问的权限,这个工作一定要细致,很容易弄错或弄漏了,做好后,最好都ssh试试。
经过我的实验,完全分布式模式至少需要在上面的基础下还要进行如下配置。
修改conf/hadoop-env.sh,添加下面配置:
export HADOOP_HOME=/data/hadoop export HADOOP_CONF_DIR=$HADOOP_HOME/conf export HADOOP_SLAVES=${HADOOP_HOME}/conf/slaves export HADOOP_MASTER=hd128:/data/hadoop
修改conf/masters,一行一个master
hd128
修改conf/slaves,一行一个slave
hd129 hd130
就这样master就配置好了,下面将hadoop整个目录分发到所有slave机器上面。
cd /data tar -czvf hadoop-ok.tar.gz hadoop scp hadoop-ok.tar.gz root@hd129:/data scp hadoop-ok.tar.gz root@hd130:/data
在slave机器上解压tar文件
cd /data tar xf hadoop-ok.tar.gz
配置基本上就完成了,下面就可以以完全分布式模式启动hadoop集群了。对hadoop集群的操作都在master机器上进行就行了,slave进程的启动和停止都是master通过ssh来控制的。
(1)首先我们需要格式化hdfs文件系统
cd /data/hadoop bin/hadoop namenode -format
(2)启动hdfs文件系统
bin/start-dfs.sh
测试下hdfs文件系统是否好用了,我们将conf目录下的所有文件放到hdfs的input目录:
bin/hadoop fs -put conf input
下面查看下input目录下下的文件:
[root@hd128 hadoop]# bin/hadoop fs -ls input Found 10 items -rw-r--r-- 1 root supergroup 2065 2011-06-19 15:41 /user/root/input/capacity-scheduler.xml -rw-r--r-- 1 root supergroup 535 2011-06-19 15:41 /user/root/input/configuration.xsl -rw-r--r-- 1 root supergroup 50230 2011-06-19 15:41 /user/root/input/hadoop-default.xml -rw-r--r-- 1 root supergroup 2397 2011-06-19 15:41 /user/root/input/hadoop-env.sh -rw-r--r-- 1 root supergroup 1245 2011-06-19 15:41 /user/root/input/hadoop-metrics.properties -rw-r--r-- 1 root supergroup 711 2011-06-19 15:41 /user/root/input/hadoop-site.xml -rw-r--r-- 1 root supergroup 2815 2011-06-19 15:41 /user/root/input/log4j.properties -rw-r--r-- 1 root supergroup 6 2011-06-19 15:41 /user/root/input/masters -rw-r--r-- 1 root supergroup 12 2011-06-19 15:41 /user/root/input/slaves -rw-r--r-- 1 root supergroup 401 2011-06-19 15:41 /user/root/input/sslinfo.xml.example
如果顺利看到这些文件,hdfs就启动正常了。
(3)启动map-reduce服务
bin/start-mapred.sh
下面检测下服务是否启动正常。
看看master机器上namenode和jobTracker服务是否存在:
[root@hd128 hadoop]# ps axu|grep java root 28546 0.3 11.3 1180236 24564 ? Sl 15:26 0:00 /usr/java/jdk1.6.0_25/bin/java -Xmx1000m -Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote -Dhadoop.log.dir=/data/hadoop/logs -Dhadoop.log.file=hadoop-root-secondarynamenode-hd128.log -Dhadoop.home.dir=/data/hadoop -Dhadoop.id.str=root -Dhadoop.root.logger=INFO,DRFA -Djava.library.path=/data/hadoop/lib/native/Linux-i386-32 -classpath /data/hadoop/conf:/usr/java/jdk1.6.0_25/lib/tools.jar:/data/hadoop:/data/hadoop/hadoop-0.19.2-core.jar:/data/hadoop/lib/commons-cli-2.0-SNAPSHOT.jar:/data/hadoop/lib/commons-codec-1.3.jar:/data/hadoop/lib/commons-httpclient-3.0.1.jar:/data/hadoop/lib/commons-logging-1.0.4.jar:/data/hadoop/lib/commons-logging-api-1.0.4.jar:/data/hadoop/lib/commons-net-1.4.1.jar:/data/hadoop/lib/hsqldb-1.8.0.10.jar:/data/hadoop/lib/jets3t-0.6.1.jar:/data/hadoop/lib/jetty-5.1.4.jar:/data/hadoop/lib/junit-3.8.1.jar:/data/hadoop/lib/kfs-0.2.0.jar:/data/hadoop/lib/log4j-1.2.15.jar:/data/hadoop/lib/oro-2.0.8.jar:/data/hadoop/lib/servlet-api.jar:/data/hadoop/lib/slf4j-api-1.4.3.jar:/data/hadoop/lib/slf4j-log4j12-1.4.3.jar:/data/hadoop/lib/xmlenc-0.52.jar:/data/hadoop/lib/jetty-ext/commons-el.jar:/data/hadoop/lib/jetty-ext/jasper-compiler.jar:/data/hadoop/lib/jetty-ext/jasper-runtime.jar:/data/hadoop/lib/jetty-ext/jsp-api.jar org.apache.hadoop.hdfs.server.namenode.SecondaryNameNode root 28628 6.3 16.8 1185080 36392 pts/0 Sl 15:28 0:01 /usr/java/jdk1.6.0_25/bin/java -Xmx1000m -Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote -Dhadoop.log.dir=/data/hadoop/logs -Dhadoop.log.file=hadoop-root-jobtracker-hd128.log -Dhadoop.home.dir=/data/hadoop -Dhadoop.id.str=root -Dhadoop.root.logger=INFO,DRFA -Djava.library.path=/data/hadoop/lib/native/Linux-i386-32 -classpath /data/hadoop/conf:/usr/java/jdk1.6.0_25/lib/tools.jar:/data/hadoop:/data/hadoop/hadoop-0.19.2-core.jar:/data/hadoop/lib/commons-cli-2.0-SNAPSHOT.jar:/data/hadoop/lib/commons-codec-1.3.jar:/data/hadoop/lib/commons-httpclient-3.0.1.jar:/data/hadoop/lib/commons-logging-1.0.4.jar:/data/hadoop/lib/commons-logging-api-1.0.4.jar:/data/hadoop/lib/commons-net-1.4.1.jar:/data/hadoop/lib/hsqldb-1.8.0.10.jar:/data/hadoop/lib/jets3t-0.6.1.jar:/data/hadoop/lib/jetty-5.1.4.jar:/data/hadoop/lib/junit-3.8.1.jar:/data/hadoop/lib/kfs-0.2.0.jar:/data/hadoop/lib/log4j-1.2.15.jar:/data/hadoop/lib/oro-2.0.8.jar:/data/hadoop/lib/servlet-api.jar:/data/hadoop/lib/slf4j-api-1.4.3.jar:/data/hadoop/lib/slf4j-log4j12-1.4.3.jar:/data/hadoop/lib/xmlenc-0.52.jar:/data/hadoop/lib/jetty-ext/commons-el.jar:/data/hadoop/lib/jetty-ext/jasper-compiler.jar:/data/hadoop/lib/jetty-ext/jasper-runtime.jar:/data/hadoop/lib/jetty-ext/jsp-api.jar org.apache.hadoop.mapred.JobTracker root 28738 0.0 0.3 4028 704 pts/0 R+ 15:28 0:00 grep java
看看slave机器DataNode和TaskTracker进程是否存在:
[root@hd129 logs]# ps axu|grep java root 2026 0.1 11.5 1180316 24860 ? Sl 15:22 0:00 /usr/java/jdk1.6.0_25/bin/java -Xmx1000m -Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote -Dhadoop.log.dir=/data/hadoop/logs -Dhadoop.log.file=hadoop-root-datanode-hd129.log -Dhadoop.home.dir=/data/hadoop -Dhadoop.id.str=root -Dhadoop.root.logger=INFO,DRFA -Djava.library.path=/data/hadoop/lib/native/Linux-i386-32 -classpath /data/hadoop/conf:/usr/java/jdk1.6.0_25/lib/tools.jar:/data/hadoop:/data/hadoop/hadoop-0.19.2-core.jar:/data/hadoop/lib/commons-cli-2.0-SNAPSHOT.jar:/data/hadoop/lib/commons-codec-1.3.jar:/data/hadoop/lib/commons-httpclient-3.0.1.jar:/data/hadoop/lib/commons-logging-1.0.4.jar:/data/hadoop/lib/commons-logging-api-1.0.4.jar:/data/hadoop/lib/commons-net-1.4.1.jar:/data/hadoop/lib/hsqldb-1.8.0.10.jar:/data/hadoop/lib/jets3t-0.6.1.jar:/data/hadoop/lib/jetty-5.1.4.jar:/data/hadoop/lib/junit-3.8.1.jar:/data/hadoop/lib/kfs-0.2.0.jar:/data/hadoop/lib/log4j-1.2.15.jar:/data/hadoop/lib/oro-2.0.8.jar:/data/hadoop/lib/servlet-api.jar:/data/hadoop/lib/slf4j-api-1.4.3.jar:/data/hadoop/lib/slf4j-log4j12-1.4.3.jar:/data/hadoop/lib/xmlenc-0.52.jar:/data/hadoop/lib/jetty-ext/commons-el.jar:/data/hadoop/lib/jetty-ext/jasper-compiler.jar:/data/hadoop/lib/jetty-ext/jasper-runtime.jar:/data/hadoop/lib/jetty-ext/jsp-api.jar org.apache.hadoop.hdfs.server.datanode.DataNode root 2204 2.3 16.0 1185772 34604 ? Sl 15:28 0:00 /usr/java/jdk1.6.0_25/bin/java -Xmx1000m -Dhadoop.log.dir=/data/hadoop/logs -Dhadoop.log.file=hadoop-root-tasktracker-hd129.log -Dhadoop.home.dir=/data/hadoop -Dhadoop.id.str=root -Dhadoop.root.logger=INFO,DRFA -Djava.library.path=/data/hadoop/lib/native/Linux-i386-32 -classpath /data/hadoop/conf:/usr/java/jdk1.6.0_25/lib/tools.jar:/data/hadoop:/data/hadoop/hadoop-0.19.2-core.jar:/data/hadoop/lib/commons-cli-2.0-SNAPSHOT.jar:/data/hadoop/lib/commons-codec-1.3.jar:/data/hadoop/lib/commons-httpclient-3.0.1.jar:/data/hadoop/lib/commons-logging-1.0.4.jar:/data/hadoop/lib/commons-logging-api-1.0.4.jar:/data/hadoop/lib/commons-net-1.4.1.jar:/data/hadoop/lib/hsqldb-1.8.0.10.jar:/data/hadoop/lib/jets3t-0.6.1.jar:/data/hadoop/lib/jetty-5.1.4.jar:/data/hadoop/lib/junit-3.8.1.jar:/data/hadoop/lib/kfs-0.2.0.jar:/data/hadoop/lib/log4j-1.2.15.jar:/data/hadoop/lib/oro-2.0.8.jar:/data/hadoop/lib/servlet-api.jar:/data/hadoop/lib/slf4j-api-1.4.3.jar:/data/hadoop/lib/slf4j-log4j12-1.4.3.jar:/data/hadoop/lib/xmlenc-0.52.jar:/data/hadoop/lib/jetty-ext/commons-el.jar:/data/hadoop/lib/jetty-ext/jasper-compiler.jar:/data/hadoop/lib/jetty-ext/jasper-runtime.jar:/data/hadoop/lib/jetty-ext/jsp-api.jar org.apache.hadoop.mapred.TaskTracker root 2266 0.0 0.3 4028 676 pts/0 R+ 15:29 0:00 grep java
我们可以看到master和slave上各自有两个java线程在服务,下面我们还是用之前的例子试试。
bin/hadoop jar hadoop-0.19.2-examples.jar grep input output 'dfs[a-z.]+'
我们用浏览器看看master和slave的运行情况:
到此为止,hadoop的安装和基本的用法就介绍完了。其实我也是新手,如果哪里说的不对,欢迎拍砖。
相关推荐
Hadoop安装使用教程Hadoop安装使用教程Hadoop安装使用教程Hadoop安装使用教程Hadoop安装使用教程Hadoop安装使用教程Hadoop安装使用教程Hadoop安装使用教程Hadoop安装使用教程Hadoop安装使用教程Hadoop安装使用教程...
Hadoop课程实验和报告——Hadoop安装实验报告 Hadoop是一个开源的大数据处理框架,由Apache基金会开发和维护。它提供了一种可靠、可扩展、可高效的方法来存储和处理大规模数据。在本实验报告中,我们将介绍Hadoop的...
3. **验证Hadoop安装**: - 使用`jps`命令检查进程是否正常启动。 - 测试写入数据:`hadoop fs -put testfile /user/hadoop/` - 测试读取数据:`hadoop fs -cat /user/hadoop/testfile` #### 目的意义 本环节...
hadoop安装和配置,这份PPT讲诉了如何安装和配置Hadoop
### Hadoop安装与配置详解 #### 一、概述 Hadoop是一个开源软件框架,用于分布式存储和处理大数据集。它能够高效地处理PB级别的数据,适用于海量数据的存储和计算场景。本文将详细介绍如何在多台虚拟机上安装和...
Hadoop安装教程_单机/伪分布式配置_Hadoop2.7.1/Ubuntu 16.04 本教程主要讲述了在 Ubuntu 16.04 环境下安装 Hadoop 2.7.1 的步骤,包括单机模式、伪分布式模式和分布式模式三种安装方式。以下是本教程的知识点总结...
《Hadoop安装部署详解》 Hadoop,作为Google文件系统(GFS)的开源实现,是分布式计算领域的重要工具,其强大的数据处理能力和高容错性吸引了众多开发者和企业的关注。本文将详细介绍如何在Linux环境下安装和部署...
标题《hadoop的安装》所涉及的知识点涵盖Hadoop安装过程中的各个方面,包括但不限于JDK环境的配置与安装、Hadoop下载、解压、配置以及启动等步骤。以下是根据给定内容和描述生成的详细知识点: 1. JDK环境配置与...
Hadoop安装部署手册是针对初学者的全面指南,旨在帮助用户了解和实践Hadoop的安装与运行。Hadoop是一个开源的分布式计算框架,由Apache基金会开发,主要用于处理和存储大规模数据集。以下是详细的步骤和关键知识点:...
我们可以使用以下命令来验证 Hadoop 的安装是否成功: ``` $> hadoop version ``` 三、配置 Hadoop Hadoop 的配置文件包括 core-site.xml、hdfs-site.xml、mapred-site.xml 和 yarn-site.xml 等。下面,我们将...
### Hadoop安装教程:单机与伪分布式配置详解 #### 一、引言 Hadoop是一种开源的大数据处理框架,广泛应用于数据存储和处理场景。本文档将详细介绍如何在Ubuntu 14.04环境下安装配置Hadoop 2.6.0版本,包括单机模式...
### Hadoop安装过程详解 #### 一、概述 Hadoop是一种能够处理大量数据的大规模分布式存储与计算框架,常用于构建大数据分析平台。本文档基于一位用户的实践经历,详细介绍了如何在虚拟机环境下安装和配置Hadoop的...
单机版 Hadoop 安装是指在单台机器上安装 Hadoop 环境,以便快速入门 Hadoop 和了解 Hadoop 的基本原理和使用方法。在这个安装过程中,我们将创建 Hadoop 用户组和用户,安装 JDK,配置环境变量,安装 SSH 服务,并...
### Hadoop 安装详细指南 #### 一、概述 Hadoop是一款开源软件框架,用于分布式存储和处理大型数据集。本文档详细介绍了如何在CentOS 7环境下部署Hadoop 2.7.3的完全分布式环境。此教程适合希望在多台服务器之间...
### Linux下载、安装、JDK配置、Hadoop安装相关知识点 #### 一、Linux环境准备与安装 **1.1 Linux版本选择** - **CentOS 6.5**:适用于本教程,是一款稳定且广受支持的企业级操作系统。 **1.2 下载Linux** - **...
在本文中,我们将详细探讨如何在Linux环境下安装Hadoop 2.7.7,这是一个广泛使用的开源分布式计算框架。在安装过程中,我们会遇到各种问题,但通过学习和实践,我们可以克服这些困难,从而深入理解Hadoop及其依赖...
云计算之Hadoop的安装与使用 云计算之Hadoop的安装与使用 云计算之Hadoop的安装与使用 云计算之Hadoop的安装与使用
hadoop1.1.2安装和配置hadoop1.1.2安装和配置hadoop1.1.2安装和配置hadoop1.1.2安装和配置hadoop1.1.2安装和配置hadoop1.1.2安装和配置hadoop1.1.2安装和配置hadoop1.1.2安装和配置hadoop1.1.2安装和配置hadoop1.1.2...
##### 2.3 Hadoop安装与配置 1. **下载与解压Hadoop**:下载Hadoop压缩包,并解压到指定目录。 2. **配置环境变量**:在`/etc/profile.d/hadoop.sh`中添加Hadoop的环境变量。 3. **配置hadoop-env.sh**:配置JDK的...